MXYZPTLK Version 3.1 User’'s Guide:
A C++ Library for Automatic Differentiation
and Differential Algebra

Leo Michel otti

September, 1995

1 Introduction

If you need to cal cul ate derivatives of complicated functionsand find yourself either taking finite differencesor writing
the derivatives algebraically and then translating the expressionsinto source code, you may want to consider using au-
tomatic differentiation (AD). AD exploits the classic theorems of differential calculusto propagate information about
derivatives through arithmetic operations. In thisway, derivatives of a function can be calculated using the same pro-
gram that calculates the function itself. Because no approximations are made, derivatives are cal culated with machine
accuracy, avoiding the errors inherent in finite differences, an especially important consideration when higher order
derivatives are required.

MXYZPTLK isalibrary of C++ classes—or “objects’ —for performing automatic differentiation. Originally writ-
ten at Fermilabin 1989, with a“User’s Guide” providedin 1990, it has undergone refinements and improvements over
the last six years. It was originally announced outside Fermilab in Automatic Differentiation of Algorithms: Theory;,
Implementation, and Application (SIAM Press, 1991) and has been used in a variety of contexts. MXYZPTLK was
the first implementation of AD which exploited object-oriented techniques (in C++) from the beginning.

Those who have not yet been exposed to AD/DA areinvited to read thereferencesin the bibliography. Herewewill
describe how to use Version 3.1 of MXYZPTLK, aC++ AD/DA library. In the next section wewill explain quickly the
mathematical models upon which the softwareisbased. Section 3 containsanumber of small programs demonstrating
theuse of AD/DA objectsin MXY ZPTLK. Thisdocument ismotivated by theideathat peoplelearn about objects more
quickly by scanning a few examples of their use than by reading syntax rules governing their behavior: the reference
section. Thus, Section 3 isits major piece, intended to jump start the reader. The shorter Section 4 will be the (still
incomplete) “reference,” devoted to describing the syntax for using objects, methods, and functions contained in the
MXYZPTLK library.



2 Concepts

Letf: RN — Randg: RY — R betwo“sufficiently” differentiablefunctionsdefined in an open neighborhood, U c RN,
of u, € U. We will say that f and g are “n'" order equivalent,” and write f ~, g, at u, iff*

f(u) =g(u) +O(||u—uy||™h) .

This property is easily seen to be an equivalence relation among functions, which then enables us to define the equiv-
alence class

(f.nW)={g[ frngatyy} . @
whichiscalleda“jet.” It isidentified by atriple containing arepresentative function, an integer, and a reference point.

The simplest element of any jet isa polynomial in the components of (u— u,). Let usdefine

N-1 3 \ " N-1
the operator D™ = |_| — (—) , and the shorthand a = |_| akm‘ ,
ko Mkt \ 0u k=0

where misan array of N non-negative integers (the “index” array).? Let P be the polynomial satisfying,

n
P(u)= 3 cm(u—up)™, where cp=(D™f)y,) . @)
m=0
wheretheformal sumistaken over arraysof non-negativeintegers, msetisfying (a) 0 < my < ny, forall k, and (b) 5 nx = n.
With the usual assumptions about differentiability, it followsthat f =, P, and P can be used asthe representative of the

jet containing f. If this connection needs to be emphasized, we will write Ps for the polynomial.

We will interchangably refer to 3 my as the degree of the polynomial term, its “weight,” or the order of the asso-
ciated derivative.

Theimportant pointisthis: the equivalence property survivesarithmetic operations. If f; ~n f, and g1 ~n g2 a Uy,
then (fyop ) ~n (g10p02) a u,, wherethe operation symbol op stands for addition, subtraction, multipliciation, or
division. Thus, to find the polynomial representative of thejet containing f opgit sufficesto perform the corresponding
arithmetic operation on the polynomials equivalent to f and g and truncate the answer at degree N. This is called
“truncated polynomial algebra,” or “truncated power series algebra,” and it is exactly what is needed to implement jet
mathematics on a computer. We will refer to N as the * degree of truncation.”

Addition and subtraction are the operations easiest to implement. We merely add the corresponding coefficients of
the truncated polynomials.
DM(f +g) = D™f £+ DTg . 3
Multiplication is accomplished easily using Leibniz'srule,

n

DA(f-g)= S (D2f)(D2 ) | @

m=0

1This is an informal definition. It could easily be made more precise and incomprehensible.  For example, something like:
JC e RIU e RVVu € U : |f(u) — g(u)| < Cl|u— u,||™?. However, there is no excuse here for thislevel of formality.
2|t isanuisanceto start the product at “k = 0.” Thisis done to maintain consistence with the C and C++ array convention.



Truncation means that 3 nx <= N. Division is accomplished by a form of repeated multiplication. Notice that by
combining f - g= w with Eq.(4) we can write arecursive procedure for defining the higher orders of ¥ in terms of its

lower orders,
n

D |D%- Y (D™f)(D" ™) ©)

f m=0

starting with g = w/ f. Egs.(3), (4), and (5) form the basisfor MXY ZPTLK's arithmetic algorithms.

Building on jets, MXY ZPTLK includes an abject for modeling the action of Lie operators. For this, the “problem
space” of coordinatesis partitioned into two subspaces, as determined by the application: a*“phase space,” or “dynam-
ical sector,” of dimension Ny, whose coordinateswe will write as u, and a*“ control sector,” of dimension N; = N — Ny,
with coordinates written as a. For example, suppose that we are studying the restricted three-body problem: say, the
motion of asmall satellite under the influence of a planet and its moon. The dynamical sector would represent the six-
dimensional phase space, corresponding to the initial momentum and position of the satellite. However, if we wanted
to examine such questions as the sensitivity of the final state to the masses of the planet and moon, then we would add
these as* control” coordinates of the problem space. The"“index array” associated with aderivativeisthe ordered array
of integers which specify the derivative. For example, if the problem spaceis 3 dimensional, say x = (ug, Uz, Up), then
the index array associated with 96 (u) /dugduous would be (1,3, 2). The sum of the indices (the components of an
index array) will be varyingly referred to as the derivative' s“weight,” its “ order,” or its “ degree.”

By design, Lie operators act only on the dynamical coordinates. In the context of this discussion, a mathematical
Lie operator can be defined as adifferential operator of the form,
0

V=yvua) o (6)

Of particular importance is the exponential map, which maps functions onto functions, formally obtained by the
expression,
goeVf= 3 Lynf (7)
& n!
Notice that if f =~ g, thenin general, Vf =, 1 Vg. Intepreted as acting on a jet, a Lie operator will lower its order.
This can be mitigated by restricting consideration to Lie operators whose v, defined in Eq.(6), satisfies

v(u,8) = O([|lu— ) -

Thisis essential in order to implement an exponential map, with its repeated application of V. In addition, for an exact
implementation, we should require that
v(u,8) = O(/Ju—u|f*) -

This condition means that the nonvani shing term of lowest degreein P; has smaller degree than the corresponding term
in R,¢. Upon repeated application of V, the lowest nonvanishing degree eventually becomes larger than the order of
thejet, and all but afinite number of termsin Eq.(7) can beignored. This condition provides Lie operatorsthat convert
AD into an exact differential algebra (DA). We will illustrate in the next section how these operators are implemented
in MXYZPTLK.

A mapping can be thought of as an array of Ng functions,

j:RNde“CHQ“d .



Alternatively, we can write this as an array of functions,
fIRYXRY

which actsas theidentity on the control sector. Thisapproachisformally more convenient when one wantsto consider
concatenating mappings: h = go f. Written with arguments, h(u, a) = g(f (u, a), @) inthefirst picture becomesthe more
natural h(z) = g(f(2)) inthe second, wherez= (u,a)".

Because we are going to model an algebra of functions, of special importance are the coordinate functions them-
selves, which are projections onto the components of u. For example, if u= (ug, us, u>)", we could define the coordi-
nate functionsx, y, and z according to x(u) = up, y(u) = uz, and z(u) = u,. We could then write a new function, say

f= efxzsiny ,
and this isinterpreted as an equation relating functionsto functions. Notice that it would be incorrect to write,
f(xy) :e’xzsiny 7,
as this would have a completely different meaning, in fact, no meaning at all in the current context. Instead, we can

write something like,
xR
f(u)= (e smy)(g), foralu .

Functions are evaluated numerically, not symbolically, as jets. Thetriplet shown in Eq.(1) is stored, with f given
by the truncated polynomial representation of Eq.(2). For the example given above, we would begin the calculation
with the coefficients,

X(U) — €000 =0.C100=1
yU) — o0 =0.Co10 =1
zu) — Co0 =0.Coon=1"

Numerical jets are built from such starting points using the rules of Egs.(3), (4), and (5). Of course, this all happens
internally and is transparent to the user, who simply writes an application as though using ordinary double precision
variables. Programsimplementing this example and others are provided in the next section for illustration.

Onefinal note: thereis no reason to restrict consideration to real coordinates. What we have written for real func-
tions can be extended to complex functions as well. Such an extension was indeed included in MXYZPTLK for the
purpose of doing normal form calculations conveniently.



3 Examples

MXY ZPTLK containstheclassesJet ,coor d,Li eOper at or, Map, andtheir complex counterpartsJet C,coor dC,
CLi eOper at or ,andCVap. Wedisplay below afew sampleprogramswhichillustratevariousfeaturesof theM XY ZPTLK
library. It is hoped that they are sufficiently instructiveto act as prototypesfor your own calculations.

No exampleswere included involving arithmetic on Map and Li eQper at or objects, but it can be done notwith-

standing. They possess the properties of avector space. It is possible to add and subtract Mapsand Li eOper at or s
together, and to multiply them by doubl e, conpl ex, or Jet objects.

3.1 Evaluating aderivative

Thisfirst demo simply prints the value of the derivative,

(e X siny) /ox"ay"

Xo,Yo

where the parameters x,, m, yo, n are entered on the command line. The source codeis shown below, followed by afew
sample uses and commentary.

Source: dfr.cc

1 #include "nmxyzptlk.rsc"

2 min( int argc, char** argv ) {
3 if( argc '=5) {

4 cout << "\nUsage: " << argv[O0]
5 << " X nxynyn"

6 << endl ;

7 exit(0);

8 }

9 int deg [2];

10 deg[0] = atoi( argv[2] );

11 deg[1] = atoi( argv[4] );

12 Jet::Setup( 2, deg[0] + deg[1] );
13 coord x( atof( argv[1l] ) ), y( atof( argv[3] ) );

14 cout << "Answer:

15 << ( exp(-x*x) * sin(y) ).derivative( deg )
16 << endl ;
17 '}



Output

hazel 1: dfr

Usage: dfr x n_x vy n_y
hazel 2: dfr 0 4 0 5
Answer: 12

hazel 3: dfr 1 3 -1 7
Answer: -0.795064

Comments

Linel: The header file mxyzptlk.rsc must beincluded near the top of any MXY ZPTLK user program.

Lines3-8: Printsalittle”usage” messageif the program nameiswritten without arguments. (Seethe“hazel 1" prompt
above.)

Lines 9-11: The integer array deg will carry the indices of the desired derivative; that is, it carries mand n. The
ordering is determined by the order in which the coor d variables have been declared. In this case, x came first, so x
isinternally associated with index O, and y, with index 1. Thus, to find 6(e*xzsiny)/6xm6y”|xo,yo, weset deg[ 0] to
mand deg[ 1] to nbefore using it as the argument to the .derivative member function, in Line 15.

Line12: Theroutine Jet::Setup must be called before performing AD/DA manipulations. Inthiscall, thefirst argu-
ment tells the library the number of independent variables, and the second indicates the maximum order of derivative
desired. Since the indices, mand n, have been given on the command line and entered into the array, deg, the second
argument is set to their sum.

Linel3: Variablesx andy aredeclared ascoord objects, or “coordinates.” coor ds arethe most basic building blocks
for AD calculations, the “independent variables’ of the function to be differentiated. They implement the projection
functions described at the end of Section 3. The two arguments from the command line set their values, which in turn
determine the point at which the function to be constructed will be differentiated.

Lines14-16: Finaly, thefunction ey ny isconstructed, and, in the sameline, the requested derivativeis sent to the
output stream. Notice that arithmetic operations on coor d objects do not return coor d objects; they return Jet objects.
(A coord is, of course, just a special kind of Jet.)

3.2 Jets

The previous example was simple enough that there was no need to store the calculationin avariable. If it is necessary
or desirable to do so, the appropriate variable type is called a Jet . This example shows Jets being used both to store
the results of calculations and to return them from functions.

Source: gb.cc

1 #include "myzptl k. rsc”



Jet g( const Jet& x, int n) {
Jet z = 0.0;

Jet term

term= Xx;

for( int k =1; k <= n; k++ ) {
z +=term/ ( (double) k );
term*= x;

}

10 z.stacked = 1;

11 return z;

o~NO O WN

©

12 }

13 main() {

14 Jet::Setup( 3, 6 );
15

16 coord x(0.0), y(0.0), z(0.0);

17 Jet a;

18 a = x*y + y*z + z*x;

19 a.printCoeffs();

20 ( g( a, 3 )*g( sin(a), 5) ).printCoeffs();

21 }

Output:

hazel 1: g5

Count = 4, Weight = 2, Max accurate weight = 6
Ref er ence point:
0. 000000e+00 0. 000000e+00 0.000000e+00

| ndex: 0O 0 O Val ue: 0. 000000e+00
| ndex: 0 1 1 Val ue: 1. 000000e+00
| ndex: 1 0 1 Val ue: 1. 000000e+00
| ndex: 1 1 0 Val ue: 1. 000000e+00
Count = 17, Wight = 6, Max accurate weight = 6

Ref er ence point:
0. 000000e+00 0. 000000e+00 0. 000000e+00

| ndex: 0O 0 O Val ue: 0. 000000e+00
| ndex: 0 2 2 Val ue: 1. 000000e+00
| ndex: 1 1 2 Val ue: 2. 000000e+00
| ndex: 1 2 1 Val ue: 2. 000000e+00
| ndex: 2 0 2 Val ue: 1. 000000e+00



| ndex: 2 1 1 Val ue: 2. 000000e+00
| ndex: 2 2 0 Val ue: 1. 000000e+00
| ndex: 0 3 3 Val ue: 1. 000000e+00
| ndex: 1 2 3 Val ue: 3. 000000e+00
| ndex: 1 3 2 Val ue: 3. 000000e+00
| ndex: 2 1 3 Val ue: 3. 000000e+00
| ndex: 2 2 2 Val ue: 6. 000000e+00
| ndex: 2 3 1 Val ue: 3. 000000e+00
| ndex: 3 0 3 Val ue: 1. 000000e+00
| ndex: 3 1 2 Val ue: 3. 000000e+00
| ndex: 3 2 1 Val ue: 3. 000000e+00
| ndex: 3 3 0 Val ue: 1. 000000e+00
Comments:.

Lines 17-18: Here we declare the variable a to be of type Jet and set its value to be the symmetric polynomial
Xy +Yyz+ 2.

Line19: Themember function Jet::printCoeffs() printsthe coefficients of the truncated polynomial. Thiscommand,
“aprintCoeffs(),” resultsin the first seven (non-void) lines of output. “Count = 4” means that there are four terms re-
tained in the polynomial. “Weight = 2” tells us that the degree of the polynomial is 2, while “Max accurate weight =
6" indicatesthat Jet:: Setup requested terms of highest degree 6 wereto be carried. The Jet’sreference point, (0,0, 0),
shown in the next two lines of output, was set in Line 16 of the source, when the coord variables, x, y, and z were de-
clared. Finally, the list of indices and values record the terms of the polynomial: indices represent the exponents and
values, the coefficients. Thus, because of the ordering, the line “Index: 0 1 1 Value: 1.000000e+00” tells us that the
XPyLz! term of a has coefficient 1. The next two lines provide the sasme information for the x'y°Z! and x'y'2 terms. In
other words, a models the polynomial, xy+ xz+yz, asit should.

Lines2-12: Theselines define a Jet function that computes the polynomials,
n
(¥ =y ¥/k
K=1

We put off a discussion of the cryptic Line 10 until later.
Line20: Herewe print the information about the polynomial,
gs(a)gs(sina), where a=xy+yz+2x ,

truncated at degree 6 (see Source Line 14). The Jet function g is invoked twice, the results multiplied together, and
the member function Jet::printCoeffs() invoked, which, as before, sends the result to the output stream. This results
in the second chunk of output, which indicates the polynomial, y2Z2 + 2xyZ + 2xy?z + X222 + 2x2yz+ x2y? + Y323 +

3XY2°Z + 3xy3 22 4 3PYZ + 6x2Y°Z + Y32+ X3 + 3CYZ + 3?2+ X3y | leaveit to the reader to explain why all
the coefficients are integers and to determine whether this remarkable property extendsto terms of higher degree.

Lines4-5and 17-18: The Jetst er mand a arefirst declared and then assigned values, in separate lines. Each could
have been combinedinto oneline, asin“Jet term=x; .”3 However, thereisasubtle reason for not doing this. Compilers
interpret the statement “ Jet term = x;” as equivalent to “ Jet term( x );” and invoke the copy constructor, not the member
function Jet::operator =, to assign the value. Because of the way Jet variables store data,* this may result in an error.

3| defy you to punctuate this sentence correctly.
4The envel ope-letter idiom is employed.



Therefore, it is recommended that Jets always be declared and assigned values on separate lines.

3.3 Differentiation

In Section 3.1 we printed the value of aparticular derivative of afunction. The corresponding AD operationisto take
thederivativeof afunction, thereby creating anew function. The Jet method which doesthisisJet::D. Wewill illustrate
its use by calculating coefficients of the Hermite polynomials,

> d" 2

Hn(X) = (=D& —e* . 8
n(0) = (-1)"e’ o ®)
Source: Hermite.cc

1 #include "nmxyzptlk.rsc"

2 min( int argc, char** argv ) {

3 if( argc !'=2) {

4 cout << "\nUsage: " << argv[0] << " n"
5 << endl ;

6 exit(0);

7}

8 int n=atoi( argv[1] );

9 Jet::Setup( 1, 2*n );

10 coord x( 0.0 );

11 Jet f, g;

12 int d=1;

13 f = exp( - x*x );

14 g="f;

15 int kK =0;

16 cout << "Results for k =" << k << endl;
17 (g/ f).printGeffs();

18 for( k =1; k <= n; k++ ) {

19 g=-90 & );

20 cout << "Results for k =" << k << endl;
21 (g/ f ).printGeffs();

22}

23 }

Output:




hazel 1: Hermte 4
Results for k = 0

Count =1, Wight = 0, Max accurate weight = 8
Ref er ence point:

0. 000000e+00

| ndex: 0 Val ue: 1. 000000e+00

Results for k = 1

Count = 2, Wight =1, Max accurate weight =7

Ref er ence point:
0. 000000e+00

| ndex: 0 Val ue: 0. 000000e+00

| ndex: 1 Val ue: 2.000000e+00

Results for k = 2

Count = 3, Wight = 8, Max accurate weight = 6

Ref er ence point:
0. 000000e+00

| ndex: 0 Val ue: -2.000000e+00
| ndex: 2 Val ue: 4. 000000e+00

Results for k = 3

1
&)

Count = 4, Wight = 7, Max accurate wei ght
Ref er ence point:
0. 000000e+00

| ndex: 0 Val ue: 0. 000000e+00
| ndex: 1 Val ue: -1.200000e+01
| ndex: 3 Val ue: 8. 000000e+00

Results for k = 4

Count =5, Wight = 8, Mx accurate weight = 4
Ref er ence point:
0. 000000e+00

| ndex: 0 Val ue: 1.200000e+01
| ndex: 2 Val ue: -4.800000e+01
| ndex: 4 Val ue: 1.600000e+01

10



Comments:

Line9: Thevaueof nhasbeenentered onthecommandline. Thereasonfor setting the second argument of Jet:: Setup
to 2n rather than n will be explained shortly.

Line10: It would be a useful exercise to understand why the reference point must be zero. How would the results
change if adifferent reference were chosen? (Try it!)

k
Lines13-14: f isassignedthejet containing e, g will takeon thevalues(fl)k%(ﬁe‘xz, fork=0...n,sowebegin

by setting it equal to f .

Line19: Hereiswherethe differentiation isdone. In each step of theloop (Lines 18-22), asingle derivative of g is
taken and stored back into g. The order of the derivative is determined by the argument of Jet::D, which is an array
of doubles, just likethat of Jet::derivative. In this case, since the problem space is one dimensional, the address, &d,
serves the same purpose as the name of an array. Notice that the same effect, apart from the sign, would have been
obtained somewhat less efficiently by substituting“g = f. D( &) ” for Line 19.

Lines17 and 21: These are the output lines. Looking back to Eq.(8), we see that it is only necessary to print out the
coefficientsfrom g/ f to obtain the desired polynomials. Looking at the output, we identify

Ho(x) = 1

Hi(x) = 2x

Ha(x) = 422

Ha(x) = 8&¢—12x

Ha(X) 16x* — 48x% + 12

Line 9 (again): Now let us return to the arguments of Jet::Setup. A Jet variable carries polynomial coefficients
only up to the particular order determined by Jet:: Setup. When a derivative operation is performed, the degree of the
representative polynomial decreases by one. This is reflected in the “Max accurate weight” field in the output. We
begin with a jet of degree 8. At each step through the loop, a single differentiation is done, so that by the end we
have ajet of “maximum accurate weight” 4, corresponding to the degree of the requested polynomial. Theinformation
about accuracy iscarried through arithmeti c operations, so that the maximum accurateweight” of g/ f isautomatically
determined by g, not f . Had we begun with a jet of smaller degree, the final polynomial would not have contained all
the coefficients required. Thus the argument of Jet::Setup was determined by our prior knowledge that Hy(x) is a
polynomial of degreen.

3.4 Mapsand Jacobians

A Map isan object that models amulti-dimensional differentiablefunction: @: R" — R". Thisexample printsthe Jaco-
bianmatrix of thetransformationfrom Cartesianto polar coordinates, 0(x, y, ) /(r, 8, @), anditsinverse, 0(r, 8, ®) / (X, Y, 2),
at a point specified on the command line.

Source: survey.cc

11



1 #include "nmxyzptlk.rsc"

2 min( int argc, char** argv ) {

3 if( argc '=4) {

4 cout << "\nUsage: " << argv[O0]

5 << " <r> <theta (deg)> <phi (deg)>\n"
6 << endl ;

7 exit(0);

8 }

9 const double d2r = M Pl / 180.0;
10 MatrixD M 3, 3 );
11 Jet::Setup( 3, 1);

12 coord r ( atof ( argv[1] ) ),
13 theta ( d2r*atof( argv[2] ) ),
14 phi ( d2r*atof ( argv[3] ) );

15 Map posi tion;

16 posi tion. Set Conponent( 0, r * sin( theta ) * cos( phi ) );
17 posi tion.Set Conponent( 1, r * sin( theta ) * sin( phi ) );
18 posi tion. Set Conponent( 2, r * cos( theta ) );

19 M = posi tion. Jacobi an();
20 cout << M << "\n\n" << Minverse() << endl;
21 }

Output:

hazel 1: survey 1. 30. 45.

( 0.35355339, 0.61237244, -0.35355339, )
( 0.35355339, 0.61237244, 0.35355339, )
( 0.8660254, -0.5, o0, )

( 0.35355339, 0.35355339, 0.8660254, )

( 0.61237244, 0.61237244, -0.5, )
( -1.4142136, 1.4142136, 0, )
Comments:

Lines 12-14: The coordinates (r, 8, @) are read from the command line and coord variables are declared with these
values. Multiplication by d2r merely converts from degreesto radians.

Lines15-18: A Map variableisdeclared and its components set. The variable posi t i on models the function,
@: (r,0,0) — (X,¥,z) = (rsinBcos@,rsinsing, r coso) .

The member function Map:: SetComponent is used to set the corresponding components of posi ti on.

12



Lines10,19-20 A 3 x 3Matrix of double precision numbers, M isdeclared, and the member function M ap:: Jacobian()
isused to load Mwith the Jacobian of posi t i on. Finaly, in Line 20, the Matrix and itsinverse are sent to the output
stream.

3.5 Evaluation

A Jet variablemodelsamathematical Jet by containing the coefficients of its polynomial representative. The member
functionJet : : oper at or () providesamechanism for evaluating that polynomial. We'll illustrate that by evaluat-

ing ey ny using its Jet representative and comparing to the exact value.

Source: ev.cc

1 #include "nmxyzptlk.rsc"
2 min( int argc, char** argv ) {

if( argc '=4) {

cout << "\nUsage: " << argv[O0]
<< " xy n\n"
<< endl ;

exit(0);

}

co~NO Ol wW

©

int deg = atoi( argv[3] );
10 Jet::Setup( 2, deg );

11 coord x( atof( argv[1l] ) ), y( atof( argv[2] ) );
12 Jet f = exp(-x*x) * sin(y);

13  doubl e point[2];
14 while(1) {

15 cout << "Enter x and y: ";

16 cin >> point[0] >> point[1];

17 cout << "Jet answer: "

18 << f( point )

19 << " Exact answer:

20 << sin( point[1] ) * exp( - point[0]*point[0] )
21 << endl ;

22 }

23 }

Output:

hazel 1: ev 1 1 16

13



Enter x and y: 1 1

Jet answer: 0.30956 Exact answer: 0.30956
Enter x and y: 0.4 1.6

Jet answer: 0.85178 Exact answer: 0.85178
Enter x and y: 2 2

Jet answer: 0.0166206 Exact answer: 0.0166544
Enter x and y: 0 0

Jet answer: 4.05366e-05 Exact answer: 0

Enter x and y: "C

hazel 2: ev -0.5 1.5 8

Enter x and y: -1.0 1.0

Jet answer: 0.309656 Exact answer: 0.30956
Enter x and y: 0 0

Jet answer: -0.00358171 Exact answer: O

Enter x and y: -1.5 0.5

Jet answer: 0.0870872 Exact answer: 0.0505311
Enter x and y: "C

Comments:

Line11: Asin Section 3.1, the reference point is specified on the command line of the program. coor d variables
are set in preparation for calculations.

Lines12 and 18: Most of this program is similar to what we' ve seen aready. Line 18 contains the new operation.
After f isconstructedinLine 12, it isused in Line 18 to evaluate the polynomial that it represents. The loop in Lines
14-22 repeatsindefinitely, and theresultsfor several valuesof poi nt can beseeninthe Output. Onthecommandline,
we have specified that (X,y) = (1, 1) be the reference point of the problem, and that the representative polynomials be
truncated at degree 16. Therest of the program need not use the reference point explicitly. In particular, Line 18 makes
no mention of it. Thus, for example, to find f ((0.4, 1.6)) we enter 0.4 and 1.6, aswould be most natural. The Jet itself
knows its own reference point and subtractsit automatically before evaluating the polynomial.

3.6 Filters

Filtersare availableto create new Jets by selecting a subset of the coefficients contained in an already existing Jet. The
most basic filter simply selects coefficients whose weights lie with agiven range. We illustrate that by calculating the
number e using two different power series.

Source: evaltest.cc

1 #include "nmxyzptlk.rsc"

N

mai n() {
doubl e r[3],

w

s[3];

4 Jet::Setup( 3, 7 );

14



a1

coord x(0.5), y(0.4), z(0.0);
6 Jet u, v;

7 u = exp( x);

8 v=exp( x +y +2z);

9 r[0] = 1.0; s[0] = 0.33;

10 r{1] = 0.0; s[1] = 0.33;

11 r{2] = 0.0; s[2] = 1.0 - s[0] - s[1];
12 for( int w=1;, w<=7;, wt ) {
13 printf( "%: %f uf \n",
14 W,

15 (u.filter( 0, w))( r ),
16 (v.filter( 0, w))( s)
17 )

18 }

19 }

Output

hazel 1: evaltest

1. 2.473082 2.705563

2: 2.679172 2.717861

3: 2.713520 2.718271

4: 2.717814  2.718282

5: 2.718243 2.718282

6: 2.718279 2.718282

7: 2.718282  2.718282

Comments

Comment 1: We shall expand two functions, u(x,y, z) = exp(x) and v(x,y,z) = exp(X+ y+ z), both about the point
(x,¥,2) = (0.5,0.4,0.0). The problem space is therefore three dimensional. We shall retain terms only up to degree
seven.

Comment 2: In setting the points of eval uation, the application program need not remember or explicitly refer to the
reference point: the Jet variables know themselves where they were evaluated. (In fact, we even could have expanded
u and v about two different reference points.)

Comment 3: Inthisloop wefilter Jet variables of various weights up to the maximum of seven. In thisway we can
follow the accuracy of the series as the number of terms increases. The reader should be able to explain easily the
greater accuracy of one series over the other, as shown in the output.

15



3.7 Concatenation

The object of this exercise is to compute a derivative of two functions which have been concatenated together. The

problem spaceis two dimensional, u = (x,y)". Consider the two mappings,

Xy +exp(x-+y)
a) = cos(yx?) ;

X+2
sinxcosy
b(u) = ( exp(x®) > ;

and their composition,
c(u) = b(a(u)) .
We shall calculate both components of 0°¢/0x%0y?| . 0,0)-

Source: concattest.cc

1 #include "nmxyzptlk.rsc"

2 min() {

3 Jet q, Vv, W, z;

4 static int index[] ={ 3, 2};
5 doubl e answer[ 2] ;

6 Jet::Setup( 2, 7, 2);

7 coord x(0.0), y(0.0);
8 Map  a, b;

9 a. Set Conponent ( 0, g = x*y*y + exp( x +Vy) );
10 a. Set Conponent ( 1, v = cos( y*x*x ) / ( x +2.0) );
11 w = sin(q) * cos(v);

12 z = exp( g*g*q ) / ( g*v );

13 x.set( a(0).standardPart() );

14 y.set( a(l).standardPart() );

15 b. fi xReferenceAtEnd( a );

16 b. Set Conponent ( 0, sin(x) * cos(y) );

17 b. Set Conponent ( 1, exp( x*x*x ) [/ ( x*y ) );

18 b(a) .derivative( index, answer );

19 cout << "Using conposition: " << answer[0]

20 << answer[1]

21 cout << "Using explicit formulas: " << w. derivative(

16



22 << z.derivative( index ) << endl
23 }

Output:

hazel 1: concattest
Usi ng conposi tion: -25.2155 50880.8
Using explicit formulas: -25.2155 50880.8

Comments:

Line7: Therewasrealy no need to carry terms of degree seven for this calculation: five would have been sufficient.
Noticethat Jet:: Setup isinvoked after Jet and Map variables have been declaredin Lines 3-4. Thisisnot good prac-
tice, but it was done here to illustrate this particular capability of MXYZPTLK. It is permitted to declare variables
before invoking Jet:: Setup. Thisallows for the possibility of giving Jet variables global scope. It isonly necessary
that Jet:: Setup be used before carrying out operations on these variables.

Lines9-10 and 16-17: TheJet sa and b are initialized so as to model the mappings a and b appearing in Egs.(9)
and (10). In the process of doing that, the components of a areloaded into the Jet sq and v for later use.

Lines13-15: Before setting the components of b, the reference point must be adjusted. When a was declared, it was
assigned the same reference point as a, a reference determined by the declarationsin Line 7. However, since we are
going to concatenateb witha toformb( a) , if (0, 0) isthe reference point of a, then we must reset the reference point
of b to be a((0,0)). Thisis done with the member functions M ap: :fixReferenceAtEnd, which adjusts the reference
point of a mapping to the image of the reference point of another mapping. In addition, the coordinates x andy are
reset to the new reference point, using coor d::set, prior to their reuse Member function Jet::standardPart returnsthe
polynomial coefficient ¢p and is used hereto find a((0, 0)).

Linel8: FirstthetwoJet sb anda arecomposed, in accordancewith Eq.(11). Themember functionsM ap::derivative
isused to load the desired derivativesinto the array answer .

Lines19-23: Using b(a) and usingwand z are compared. The results should be, and are, identical. Notice the dif-
ferencesbetween Jet::derivativeand M ap::derivative. Thelatter evaluatesthe desired derivativefor each component
of the Map and returns the resulting numbersin an array argument.

3.8 Inversion

If thefunction f : R" — R isinvertible at the reference point u,, then the member function M ap::1nver se allows one
to compute the (multidimensional) Jet corresponding to the local inverse map, f 1 at the reference point f (u,). Inthe

demo below we invert the function
X 3+X+3y+xy—yz
foly |—[ —1+y—x+z+xz+y?

z 2+7+2X+yz—Xyz

atu, = (—1.2,3.5,2.1)T. The Output section is rather lengthy, but comments do indeed follow it, as usual.

17



Source:

1 #include "nmxyzptlk.rsc"

N

mai n() {

w

4 Jet::Setup( 3, 4, 3);

5 coord x(-1.2), y(3.5), z(2.1);
6 Map f,ou

7 f.Set Conponent( O, 3.0 + x + 3.0*y + x*y - y*z )
8 f.Set Conponent( 1, -1.0 +y - X + z + Xx*z + y*y );
9 f.Set Conponent( 2, 2.0 + z + 2.0*x + y*z - x*y*z );
10 u = f.lnverse();

11 cout << "\n===== f.printCoeffs();

12 f.printCoeffs();

13 cout << "\n====== u. print Coeffs();

14 u. print Coeffs();

15 cout << "\n====== f(u).printCoeffs();

16 f(u).printCoeffs();

17 cout << "\n===== u(f).printCoeffs();

18 u(f).printCoeffs();

19 }

Output

====== f . print Coef fs();
Frxkxxkkxkkx Begin Li eOperator::printCoeffs ***xxkxx
Weight: 3

kkkkkkhkhkkhkhkkhkkhkkkhk*x

**** Conponent index = 0

Count = 6, Wight = 2, Max accurate weight = 4
Ref er ence point:
-1.200000e+00 3.500000e+00 2.100000e+00

| ndex: 0O 0 O Val ue: 7.500000e- 01
| ndex: 0 0 1 Val ue: -3.500000e+00
| ndex: 0 1 O Val ue: -3.000000e-01
| ndex: 1 0 O Val ue: 4. 500000e+00
| ndex: 0 1 1 Val ue: -1.000000e+00
| ndex: 1 1 0 Val ue: 1. 000000e+00

18

\'n

\'n

\'n

\'n

<<

<<

<<

<<

endl ;
endl ;
endl ;

endl ;



kkkkkkhkkhkkhkkhkkhkkhkkkhk*x

**** Conmponent index =1

Count = 6, Wight = 2, Max accurate weight = 4
Ref er ence point:
-1.200000e+00 3.500000e+00 2.100000e+00

| ndex: 0O 0 O Val ue: 1. 553000e+01
| ndex: 0 0 1 Val ue: -2.000000e-01
| ndex: 0 1 O Val ue: 8. 000000e+00
| ndex: 1 0 O Val ue: 1. 100000e+00
| ndex: 0 2 O Val ue: 1. 000000e+00
| ndex: 1 0 1 Val ue: 1. 000000e+00

kkkkkkhkhkkikkhkkhkkhkkkhk*x

**** Conmponent index = 2

Count = 8, Wight = 3, Max accurate weight = 4
Ref er ence point:
-1.200000e+00 3.500000e+00 2.100000e+00

| ndex: 0O 0 O Val ue: 1. 787000e+01
| ndex: 0 0 1 Val ue: 8. 700000e+00
| ndex: 0 1 O Val ue: 4. 620000e+00
| ndex: 1 0 O Val ue: -5.350000e+00
| ndex: 0 1 1 Val ue: 2.200000e+00
| ndex: 1 0 1 Val ue: -3.500000e+00
| ndex: 1 1 0 Val ue: -2.100000e+00
| ndex: 1 1 1 Val ue: -1.000000e+00

*rkkkkkkxxkkx Epd Li eOperator::printCoeffg **x**xxx

—===== . prl nt Coeffs() )

Frxkxxkkxkkx Begin Li eOperator::printCoeffs ***xxkxx
Weight: 4

kkkkkkhkkhkkhkkhkkhkkhkkkhk*x

**** Conmponent index = 0

Count = 35, Wight = 4, Max accurate weight = 4
Ref er ence point:
7.500000e- 01 1.553000e+01 1.787000e+01

19



| ndex: 0O 0 O Val ue: -1.200000e+00
| ndex: 0 0 1 Val ue: 1.842162e-01
| ndex: 3 0 1 Val ue: 1.291290e- 01
| ndex: 3 1 0 Val ue: -6.330736e-02
| ndex: 4 0 O Val ue: 5. 789563e- 02

kkkkkkhkkhkkhkkhkkhkkhkkkhk*x

**** Conmponent index =1

Count = 35, Wight = 4, Max accurate weight = 4
Ref er ence point:
7.500000e- 01 1.553000e+01 1.787000e+01

| ndex: 0O 0 O Val ue: 3. 500000e+00
| ndex: 0 0 1 Val ue: -1.936699e-02
| ndex: 3 1 0 Val ue: 1.901941e-02
| ndex: 4 0 O Val ue: -1.652798e-02

kkkkkkhkkhkkhkhkkkkhkkkhk*x

**** Conmponent index = 2

Count = 35, Wight = 4, Max accurate weight = 4
Ref er ence point:
7.500000e- 01 1.553000e+01 1.787000e+01

| ndex: 0O 0 O Val ue: 2.100000e+00
| ndex: 0 0 1 Val ue: 2.385095e- 01
| ndex: 3 1 0 Val ue: -8.390785e-02
| ndex: 4 0 O Val ue: 7.560193e- 02

Kk xFkxkxkE* Kk End Li eOperator::printCoeffg **x**xxx

====== f(u).printCoeffs();

Frkkxxkkxkkx Begin Li eOperator::printCoeffs ***xxkxx
Weight: 1

kkkkkkhkhkkhkkhkkhkkhkkkhk*x

**** Conmponent index = 0

20



I
N

Count = 2, Wight = 1, Max accurate wei ght
Ref er ence point:
7.500000e- 01 1.553000e+01 1.787000e+01

Val ue: 7.500000e- 01

| ndex: 0
1 Val ue: 1. 000000e+00

0 O
| ndex: 0 O

kkkkkkhkkhkkhkhkkhkkhkkkhk*x

**** Conmponent index =1

Count = 2, Wight = 1, Max accurate weight = 4
Ref er ence point:
7.500000e- 01 1.553000e+01 1.787000e+01

Val ue: 1.553000e+01
Val ue: 1. 000000e+00

| ndex:

0 0 O
| ndex: 0 1 O

kkkkkkhkhkkhkkhkkhkkhkkkhk*x

**** Conmponent index = 2

I
N

Count = 2, Wight = 1, Max accurate wei ght
Ref er ence point:
7.500000e- 01 1.553000e+01 1.787000e+01

| ndex:

0O 0 O Val ue: 1. 787000e+01
| ndex: 0 0 1

Val ue: 1. 000000e+00

*rEkkkkkkxxkkx Epd Li eOperator::printCoeffg **x**xxx

====== u(f).printCoeffs();

Frxkxxkkxkkx Begin Li eOperator::printCoeffs ***xxkxx
Weight: 4
*hkkhkkkhkkhhkkhkhkkxkhkhkkx*k

**** Conmponent index = 0

Count = 3, Wight = 4, Max accurate weight = 4
Ref er ence point:
-1.200000e+00 3.500000e+00 2.100000e+00

| ndex: 0O 0 O Val ue: -1.200000e+00

21



Val ue: 1. 000000e+00
Val ue: -4.786373e-15

| ndex:

1 0 O
| ndex: 0 4 O

kkkkkkhkkhkkhkhkkhkkkhkkkhk*x

**** Conmponent index =1

Count = 3, Wight = 4, Max accurate weight = 4
Ref er ence point:
-1.200000e+00 3.500000e+00 2.100000e+00

| ndex: 0 0 O Val ue: 3. 500000e+00
| ndex: 0 1 O Val ue: 1. 000000e+00
| ndex: 0 4 O Val ue: 9.367778e- 16

*hkkhkkkhkhhkkxhkhkkxhkhkkx*k

**** Conmponent index = 2

Count = 3, Wight = 4, Max accurate weight = 4
Ref er ence point:

-1.200000e+00 3.500000e+00 2.100000e+00

| ndex: 0O 0 O Val ue: 2.100000e+00

| ndex: 0 0 1 Val ue: 1. 000000e+00

| ndex: 0 4 O Val ue: -3.265400e- 15

R R R R R = o [+ Li eOperator::printCoeffg **x**xxx

Comments:

Lines5-10: TheMap variablef isconstructed using methods already described in preceding demos. Line 10 invokes
the member function Map: : | nver se() toload theinverse of f into u. We decide to retain terms only through de-
gree 4.

Lines11-14: Thecoefficientsinf and u are printed first. Each is a three-component map, each component being a
Jet. The components are written separately and identified. In comparing the program variable f to the mathematical
function, f, remember to take the reference point into account.

Lines15-18: Hereistheacidtest. If indeedf and u model inverse Jets, thenit must bethat f (u) and u( f) model
the identity functions at their respective reference points, u, and f (u,). The output shows that thisis indeed the case
apart from aterm of fourth degreein u( f) which is clearly due to machine error. You should thoroughly review the
output at this point to be sure you under stand why the printed coefficients support this claim.

We have not yet included aprogram using complex valued jets. So asto include at least one such example, what fol -

22



lowsis source code for an anal ogousinverse cal cul ation but using complex mapswith areferencepoint of (—1.2+0.9i,3.5+ 1.7,2.1—0.
Therequired extracall to JetC:: Setup isaflaw inthe MXY ZPTLK software and will be corrected. Therest of the pro-
gram isjust written in parallel to the previous one, except that coor dC and CM ap abjects are used.

Source:

1 #include "nmxyzptlk.rsc"

2 min( ) {

3

4 Jet::Setup ( 3, 4, 3);

5 JetC. : Setup( 3, 4, 3);

6 coordC x( conplex( -1.2, 0.9) ),

7 y( complex( 3.5, 1.7) ),

8 z( complex( 2.1, -0.3) );

9 CMVap W, u;

10  w. Set Conponent( O, conplex( 3.0, 1.0) + x + 3.0*Yy + x*y - y*z )
11  w. Set Conponent( 1, conplex( -1.0, 0.2) +y - X + 2z + X*z + y*y );
12 w. Set Component ( 2, conplex( 2.0, -0.9) + z + 2.0*x + y*z - x*y*z );
13 u = wlnverse();

14 cout << "\n====== w. print Coef fs(); \n" << endl;
15  w printCoeffs();

16 cout << "\n====== u. print Coef fs(); \n" << endl;
17 u. print Coeffs();

18 cout << "\n====== w(u).printCoeffs(); \n" << endl;
19 wWu).printCoeffs();

20 cout << "\n===== u(w).printCoeffs(); \n" << endl;
21 u(w) . printCoeffs();

22 }

3.9 LieOperators

MXYZPTLK contains a Lie operator object which acts on Jets. 1n the example below, we will model the “equations

of motion,”
x=x2y° %), y=-y2¢-y) .
using the Lie operator,

v=x<zy3—x3>§x—y<zx3—y3>§y . (12)

23



Thisvector field possessesaninvariant: f(x,y) = 2 /y+ Y /X. The program will test theinvariant property by applying
the Lie operator. That is, it will check the condition, V f = 0.

Source: Lie K _Test.cc

1 #include "nmxyzptlk.rsc"

2 min( int argc, char** argv ) {

3 if( argc '=4) {

4 cout << "\nUsage: " << argv[O0]

5 << " deg x y"

6 << endl ;

7 exit(0);

8 1}

9 Jet::Setup( 2, atoi( argv[l] ), 2 );

10 coord x( atof( argv[2] ) ), y( atof( argv[3] ) );

11 Li eOperator V;

12 V. Set Conmponent ( O, x*( 2.0 powm( vy, 3 ) - pow( x, 3 ) ) );
13 V. SetComponent( 1, - y*( 2.0*powm x, 3 ) - pow( Yy, 3 ) ) );
14 (V" ( x*x1y + y*y/x ) ).printCoeffs();

15 }

Output:

hazel 1: Lie K Test 5 1.7 3.5
Count = 6, Wight =5, Max accurate weight = 4

Ref er ence point:
1. 700000e+00 3.500000e+00

Comments:

Lines11-13: After declaringtheLi eOper at or Vwe set itscomponentsin the sameway aswewould aMap vari-
able. In fact, the two are, more or less, synonomous, in the sense that both contain an array of jets. Of course, they are
very different mathematical objects.

Line14: Themathematical operation of aLieoperator on afunctionisimplemented viathe method L ieOper ator :: operator” (
const Jet& ). The operator symbol “* " was not used for thisin order to avoid confusion with statements like,

Li eQperator V, W Y;
Jet f;

24



<=

f*V,
V*f;

t
t

which are meant to model the mathematical operations, W =Y = fV. The output shows no terms because the only
non-zero ones are due to machine error appearing at degree 5, which is higher than the “Max accurate weight.”® That
no terms are printed is equivalent to saying that the Jet isidentically zero.

Of course, thistest applies only to the reference point. Automatic differentiation isnot symbolic differentiation, for
which a zero result would apply everywhere.

3.10 Brackets

The commutator of two Lie operatorsisitself aLie operator. This binary operation is accomplished in MXYZPTLK
by sandwiching the operator symbol “~ " betweentwo Li eQper at or objects. Wewill illustrateits use by calculating
the action of V, defined in Eq.(12), W, defined as

and [V, W] onthe function f =2 +y2.

Source: Ibtest.cc

1 #include "nmxyzptlk.rsc"

2 min( int argc, char** argv ) {

3 if( argc !'=4) {

4 cout << "\nUsage: " << argv[O0]
5 << " deg x y"

6 << endl ;

7 exit(0);

8 1}

9 Jet::Setup( 2, atoi( argv[l] ), 2 );
10 coord x( atof( argv[2] ) ), y( atof( argv[3] ) );
11 Jet f = x*x + y*y; /1l Equivalent to "Jet f( x*x + y*y );"

12 Li eOperator V, W

13 V. Set Conmponent ( O, x*( 2.0*powm( y, 3 ) - pow( x, 3)
14 V. Set Component ( 1, - y*( 2.0*powm x, 3 ) - pow( Yy, 3)
15 W Set Component( 0, vy );

) )
) )

5The fact that these useless terms are even carried around is an anomaly that, it is hoped, will be eliminated in future versions of MXY ZPTLK.

25



16 W Set Component ( 1, -x );

17 (Vvf) .printCoeffs();
18 ( wWf) .printCoeffs();
19 ( (VW f ) .printCoeffs();
20 }

Output:

hazel 1: Ibtest 3 1 1

Count = 8, Wight = 3, Max accurate weight = 2
Ref er ence point:
1. 000000e+00 1. 000000e+00

| ndex: 0 1 Val ue: 1. 400000e+01

| ndex: 1 0 Val ue: -1.400000e+01

| ndex: 0 2 Val ue: 2. 800000e+01

| ndex: 2 0 Val ue: -2.800000e+01

Count = 0, Weight = -1, Max accurate weight = 2
Ref er ence point:

1. 000000e+00 1. 000000e+00

Count = 10, Wight = 3, Max accurate weight = 2

Ref er ence point:
1. 000000e+00 1. 000000e+00

| ndex: 0 O Val ue: 2. 800000e+01
| ndex: 0 1 Val ue: 7.000000e+01
| ndex: 1 0 Val ue: 7.000000e+01
| ndex: 0 2 Val ue: 6. 000000e+01
| ndex: 1 1 Val ue: 1. 600000e+02
| ndex: 2 0 Val ue: 6. 000000e+01
Comments:

Line1l: Thisisthe declarationof aJet variable using its copy constructor. BE AWARE: doing thisisalittle dan-
gerous, because Jet s employ an envel ope-letter idiom for storing data. It is recommended that Jet variablesaways
be declared and initialized separately. In this case, it would have been better to have written,

Jet f;
f = x*x + y*y;

Line19: Most of the program is similar to what has gone before. This line contains the only new operation, taking
the commutator of V and Whefore acting on f .

26



MXYZPTLK aso contains a Poisson bracket operation, accomplished by sandwiching the operator symbol “~”
betweentwo Jets. Thatis, f ~ g models{ f,g} whenf andg areJet variablesjustasU" V models[U, V] when Uand
VareLi eQper at or variables. The next example employs both Lie brackets and Poisson brackets to test the well
known antimorphism,

[Va, Vp] = —Viapy -

We will let

E) = X%Xgplplzla
b(x,p) = sn(app3) -

The brackets will be evaluated at the arbitrarily selected reference point, (x, p) = (0.32,0.5,-3.1,1.5). As an added
bonus, we will test the Jacobi identity, using athird function, c = exp(p1xg + p2X2).

Source:

1 #include "nmxyzptlk.rsc"

2 min() {
3 doubl e ul( 0.32 ), u2( 0.5),
4 vi( -3.1), v2( 1.5);

5 Jet::Setup( 4, 6, 4);

6 double w, y, z, answer;
7 coord x1( ul ), x2( u2 ), pi( v1), p2( v2);
8 Jet a, b, c, pb;

9 /1l -- Calculation of Poisson bracket via Jets

10 a (x1*x1) * (x2*x2*x2) * pl * (p2*p2*p2*p2);

11 b sin( x1 * (p2*p2) * (x2*x2*x2) );

12 pb = a“b;

13 cout << "Conputed by Jet: " << pb.standardPart() << "\n";

14 // -- Hand cal cul ations

15 w = (ul*ul) * (u2*u2*u2) * vi1 * (v2*v2*v2*v2);

16 vy = ul * (v2*v2) * (u2*u2*u2) ;

17 z =cos( vy );

18 answer = wry*z*( 6.0/ (u2*v2) - 1.0/ (ul*vl) - 12.0/(u2*v2) );
19 cout << "Exact answer " << answer << "\n";

20 cout << "And al so :

21 << (( (x1*x1) * (x2*x2*x2) * pl * (p2*p2*p2*p2) ) ~
22 ( sin( x1 * (p2*p2) * (x2*x2*x2) ) )

23 ) . standardPart ()

24 << "\n\n";

27



25 /] -- Test of the Jacobi identity

26 c = exp( pl*x1l + p2*x2);

27 cout << "Jacobi identity" << endl;

28 ( (a”(b"c)) + (b"(c”a)) + (c"(a"b)) ).printCoeffs();

29 /] -- Haniltonian vector fields
30 Li eOperator V_a ( a );
31 Li eOperator V.b ( b );
32 Li eOperator V_pb( pb );

33 cout << "Hamiltonian test" << endl;

34 ( V.pb+( Va”™ V.b) ).printCoeffs();
35 }

Output:

hazel 2: pbtest

Conputed by Jet: 0.125897
Exact answer :0.125897
And al so : 0.125897

Jacobi identity

Count = 84, Wight = 6, Max accurate weight = 4
Ref er ence point:
3.200000e- 01 5.000000e-01 -3.100000e+00 1.500000e+00

Ham | t onian test

Frxkxxkkxkkx Begin Li eOperator::printCoeffs ***xxkxx
Weight: 6

kkkkkkhkhkkhkhkkkkhkkkhk*x

**** Conmponent index = 0

Count = 28, Wight = 6, Max accurate weight = 4
Ref er ence point:
3.200000e- 01 5.000000e-01 -3.100000e+00 1.500000e+00

kkkkkkhkhkkhkhkkkkhkkkk*x

**** Conmponent index =1

Count = 49, Wight = 6, Max accurate weight = 4
Ref er ence point:
3.200000e- 01 5.000000e-01 -3.100000e+00 1.500000e+00

kkkkkkhkhkkhkhkkkkhkkkhk*x

**** Conmponent index = 2

28



Count = 49, Wight = 6, Max accurate weight = 4
Ref er ence point:
3.200000e- 01 5.000000e-01 -3.100000e+00 1.500000e+00

kkhkkhkhkkkkhkkhkkkhkhkkkkhkhkkk*k

**** Conmponent index = 3

Count = 49, Wight = 6, Max accurate weight = 4

Ref er ence point:

3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

*kxkkxkxkx* kR End Li eOperator::printCoeffg **x**xxx

Comments:

Lines9-12,14-18: The Poisson bracket is computed two ways: (1) using the binary operator ~ on Jet variablesa and
b and (2) for comparison, using itsalgebraic expansion on variables of typedouble. Line 12 containsthe actual Poisson
bracket, written as abinary operator on two Jet variables, using the same symbol asfor Li eOper at or variables.

Lines 20-24: Thisthird calculation emphasizes that Jet methods and operators work not only on formally declared
Jet variables but also on expressions which evaluate to Jet variables. Of course, that is obtained for free as afeature of
the C++ language.. The hand calculation of Lines 14-18 is repeated but using coor ds.

Line28: Thisteststhe Jacobi identity. The expression should evaluate to zero, and the Output indicatesthat it does.
The extra parentheses make certain that everything gets evaluated in the proper order. Not only is the Poisson bracket
operation non-associ ative (and non-commutative), its precedence rel ative to other operationsis an issue best |eft unex-
plored.

Lines30-32: Thisform of declaringali eOper at or takesaJet variable as an argument and builds the Hamilto-
nian vector field associated with it.

Line34: Finaly, the morphism test itself. What is calculated hereis,
Viab) +[Va Vo] ,
and the Output indicates that the result isindeed zero. (That is, no terms are printed.)

3.11 Exponential maps

The member function LieOperator::expM ap performs an exponential map of a LieOperator and appliesit to aJet
to obtain the resulting Jet . In the example below, we will use LieOperator::expMap to “integrate” the equations of

motion,

x=x2y° %), y=-y2¢ -y’ .
using the Lie operator already written in Eq.(12). Recall that this vector field possesses an invariant: X2 /y+y?/x. The
program tests the map by the value of this invariant both before and after the time step.

Source: Lie L _Test.cc

29



1 #include "nmxyzptlk.rsc"

2 min( int argc, char** argv ) {
3 if( argc !'=3) {

4 cout << "\nUsage: " << argv[O0]
5 << " deg t"

6 << endl ;

7 exit(0);

8 1}

9 int deg atoi ( argv[1] );
10 doubl e t atof ( argv[2] );
11 Jet::Setup( 2, deg, 2 );

12 coord x( 0.0), y( 0.0);

13 Li eOperator V;
14 V. Set Conmponent ( O, x*( 2.0 powm( vy, 3 ) - pow( x, 3 ) ) );
15 V. Set Component( 1, - y*( 2.0*powm( x, 3 ) - pow( vy, 3 ) ) )

16 Jet f, g;
17 f V. expMap( t, X );
18 g = V.expMap( t, vy );

19 double a, b, z[2];
20 while(1) {

21 cout << "Enter x and y: ";

22 cin >>z[0] >> z[1];

23 a=f(z);

24 b=g9(2z);

25 cout << "( " << z[0] << ", " << Z[1] << " ) maps to ( "
26 << a << ", " << b << " )" << endl;
27 cout << "Before: " << setprecision(5)

28 << z[0]*z[O0]/z[1] + z[21]*z[1]/z[O]

29 << " After: " << setprecision(5b)

30 << a*a/b + b*b/a << endl;

31}

32 }

Output:

hazel 1: Lie_L_Test 20 1.

Enter x and y: .3 .5

( 0.3 0.5) maps to ( 0.380158, 0.53075 )
Before: 1.0133 After: 1.0133

Enter x and y: .4 .6

( 0.4, 0.6 ) maps to ( 0.56134, 0.59739 )
Before: 1.1667 After: 1.1632

30



Enter x and y: .5 .7

( 0.5 0.7) maps to ( 0.65366, 0.57497 )
Before: 1.3371 After: 1.2489

Enter x and y: .6 .8

( 0.6, 0.8) maps to ( 0.75124, 1.4679 )
Before: 1.5167 After: 3.2528

Enter x and y: "C

hazel 2: Lie_L_Test 20 -1.

Enter x and y: -.3 -.5

( -0.3, -0.5) maps to ( -0.380158, -0.53075 )
Before: -1.0133 After: -1.0133

Enter x and y: -.4 -.6

( -0.4, -0.6) maps to ( -0.56134, -0.59739 )
Before: -1.1667 After: -1.1632

Enter x and y: -.5 -.7

( -0.5, -0.7) maps to ( -0.65366, -0.57497 )
Before: -1.3371 After: -1.2489

Enter x and y: -.6 -.8

( -0.6, -0.8) maps to ( -0.75124, -1.4679 )
Before: -1.5167 After: -3.2528

Enter x and y: “C

Comments:

Lines9-12: The degree of the representative polynomial is established, and the size of the time step is read from the
command line. After Jet:: Setup requests a two-dimensional phase space, its coordinates, x and y, are declared.

Lines13-15: Componentsof theLi eOper at or Visconstructed so asto model the vector field, V, written above.

Lines17-18: Theselinesperform the exponential map operation onthejetsx andy. The corresponding mathematical
operation would be written,
f=eVx, g=¢€'y.

We are applying the exponential map the coordinate functions themselves. Thus, if (xg,y1)/mapsto(Xz, y2) under the
flow of Eq.(12), it must be that x, = f(x1) and y2 = g(y1).

Lines19-31: Within an indefinite loop, points are entered and converted with Jetsf and g. Values of the invariant
are printed for the “initial” and “final” states. The Output shows two runs of this program, for time steps +1. Poly-
nomials are truncated at degree 20. There are two things to note: (a) symmetry is correctly preserved (i.e., t — —t,
X — —X, andy — —Y), and (b) the polynomial representation fails rapidly as the size of the argument increases. The
latter property is not helped by taking more polynomial terms. The problem of determining the radius of convergence
of an exponential map is an ongoing topic of research. Note, however, that regardless of whether the series converges
or not, the coefficientsin the truncated polynomial are computed exactly.

6Thereisacodicil to this: V must map zero to zero and not start with alinear term.

31



4 Functionsand methods

In this section we describe the functions and methods’ currently available in MXYZPTLK, arranged in the order in
which they probably would be used in most programs.

4.1 Setup function

void Jet::Setup(int n, int w, int s, double* r, double* sc)

Before Jet variables can be used, the application program must provide information on the dimensions of the prob-
lem space and on aninitial reference point. Thisisdone with a Setup function which must be invoked before using Jet
variablesin arithmetic or analytic operations. The formal arguments, all input, are interpreted as follows.

int n: Dimension of the problem space, the total number of dynamical and control coordinates.

int w: The maximum derivative weight to be carried by Jet variables. If weinterpret a Jet variable as a multinomial,
then its degree will be <w.

int s The number of dynamical coordinates, i.e., the dimension of “phase space.”
doubler[n]: An array containing the reference point.

doublesc[n]: Anarray containing numbers characterizing the scale of each coordinate.

Every argument is provided a default value in the header file Jet.hxx. Thesearee n=6,w=1,s=0,r =0, and
sc = 0. If sisnot declared explicitly, the default option of 0 meansthat all variables are considered to be control vari-
ables, and neither concatenation nor Poisson brackets will be allowed (see Sections 4.7 and 4.8). If a reference point
isnot declared, it will be set to the “origin,” an array of zeroes. Finally, if the scaling array, sc, is not explicitly given,
Jet::Setup will assumethat all the values of all variables will have roughly unit magnitude. Jet::Setup will stop the
application program if arguments s and n do not satisfy 0 <s< n.

Inprinciple, Jet:: Setup should beinvoked beforethe formal declaration of Jet variables, but thisis not aways pos-
sible. For example, an application program may contain afragment like this:

Jet x;
Jet v;

mai n() {
Jet:: Setup();

}....

“A “method” is a public member function of either the Jet or LieOperator class.

32



Here, x and y are meant to be global variables, so they are initialized when the program begins to run and before the
Jet:: Setup function can beinvoked. What happensin such acaseisthis: the Ct+ Jet constructorsonly partiallyinitial-
ize these variables and load their addresses into a queue. When Jet:: Setup isfinally invoked, this queueis traversed,
and theinitialization of any variable which had been declared previously is completed.

4.2 Setting the reference point

(a) staticvoid Jet::FixReference (const double* )
(b) staticvoid Jet::FixReference (const int* )
(c) static void Jet::FixReference (const Jet& )

(d) staticvoid Jet::FixReferenceAtStart const LieOperator & )
(e) static void Jet::FixReferenceAtEnd( const LieOperator& )

® void Jet::fixReference 0

(9) void Jet::fixReference ( const double* )

(h) void Jet::fixReference (const Jet& )

Q) void Jet::fixReferenceAtEnd (const T& )

()] void Jet::fixReferenceAtStart const T& )

(k) void T ::fixReference (double* )  Note: T iseither aMap
() void T ::fixReference 0 or aLieOperator
(m) void T ::fixReference (Jet& )

(n) void T ::fixReferenceAtEnd (const T& )

(o) void T ::fixReferenceAtStart const T& )

Every Jet variablecarriesthe coefficients of apolynomial that isthe simpl est representative of an equivalenceclass
of functions. In addition, it also carries the reference point at which the equivalence classis established. Whenever a
Jet variableisdeclared, therefore, areferencepoint must begiven. If oneisnot assigned explicitly, itisdoneimplicitly
by using adefault reference point, established initially asthe argument of aJet::Setup fuction. Jet variablesdeclared
either before or after its invocation are assigned this reference point as their own. Alternatively, if the calculation is
initialized by declaring a number of coor d variables, then their values automatically become the components of the
default reference point.

However, the default reference point need not remain the same throughout a program. It can be changed by one
of thefirst four functionslisted above. Thefirst setsit valueto that of an array provided by the user. Changing thisarray
later inthe application programwill not, by itself, changethe default reference; another invocation of Jet:: FixReference
would be required. Form (b) of this function sets (or resets) the default reference point to that of an already defined
Jet variable. The third function, Jet::FixReferenceAtStart, sets the default reference to the reference point of its
argument; the fourth, Jet::FixReferenceAtEnd, sets it to the standard part of its argument. For example, suppose
the first component of a LieOperator u prolongs the function cos(xy+ 11/2), while the second component prolongs
sin(xy+ 11/2), both about the point (x,y) = (/T, —/T). Then“Jet : : Fi xRef erenceAt Start ( u )” would set
thedefault referenceto (/11 —+/T), while“Jet : : Fi xRef er enceAt End( u ) ” would setitto (0, —1). Thelatter

33



function is essential for doing concatenation correctly (see Sections 4.7 and 3.7).

The ten methods (€)-(n) are public members of the Jet and LieOperator classes. They perform analagously to the
first four, but rather than acting on the default reference point, these members adjust the reference point of the individ-
ual variables. For example, in the fragment

Jet x, vy, z;

x.fixReference( y );
z. fi xReference();

the .fixReference member sets the reference point of x to that of y, while the reference point of z is set to the cur-
rent default reference.

4.3 Initializing a calculation: coordinates

(a coord::coord (doublex)

(b) void Jet  ::setVariable (intj)

(c)void Jet ::setVariable (doublex, intj)

(d)void T ::SetComponent(int j, const Jet& x) Note: T iseither aMap
or aLieOperator

AD/DA arithmetic must begin by identifying a set of variables as differentiable coordinate functions. The simplest
way of doing thisisto declare coord variables, aswas done in the demos of Section 3. However, thisis not the only
way. Jet variables can also act like coordinates After setting the default reference point with Jet:: Setup or JetFixRef-
erence, one simply assigns an “index” to each coordinate variable, asin the fragment below.

static double r[] ={ 0., 1., -1. };
Jet::Setup( 3, 12, 0, r );

Jet x, vy, z, f;
X.setVariable( 0 );
y.setVariable( 1);
z.setVariable( 2)

f = exp( x*y + z);

Thisidentifiesthe phase space coordinatearray, u = (x, Y, z). Thevariablef will contain dataon thedifferentiablefunc-
tion, f (u) = €¥*2 with derivativesevaluated at the point u = (0, 1, —1). These data can be accessed through aselection
method (explained in Section 4.6) by using the indices that were assigned by .setVariable.

A second way of initializing a Jet calculation employs the second form of .setVariable to declare a Jet variable as

34



a coordinate while simultaneously setting its value. This method is not recommended: it resets the default reference
point one component at atime, so that ainvoking .fixReference would be required after the fact.

Jet::Setup( 3, 12 );
Jet x, vy, z, f;

.0, 0);
.0, 1);

X.setVariable( O
1 ) )
-1.0, 2);

y. set Vari abl e(
z.set Vari abl e(

x. fi xReference();
y.fixReference();

f = exp( x*y + z);

The two LieOperator methods enable one to declare a component of a LieOperator variable to be a coordinate —
which isuseful in the control sector — or to load Jet variablesinto specific components — prior to concatenation, for
example. Their use wasillustrated in Section 3.

4.4 Operators

Logical and arithmetic binary operators act the way one naturally expects. The replacement operator, =, enables the
replacement of one Jet, or LieOperator, variable by another, while the logical operators == and ! = test whether two
variables are equivalent. Arithmetic operators+, -, * and/, when sandwiched between two Jet variables, activate
the corresponding arithmetic operations of addition, subtraction, multiplication, and division. In addition, the subtrac-
tion symbol, - , also acts asaunary operator on Jet variables, indicating that they areto be negated. The C++ operators
+=, -=, *=, and/ = areavalableaswell.

When placed between two LieOperator variables, the “multiplication” operator, *, initiates concatenation rather
than multiplication. Thiswill be discussed in detail in Section 4.7.

Componentsof aLieOperator can be accessed asonewould expect, using member function Jet LieOperator ::oper ator ()(
int ). For example,
Jet x, vy, z, ... ;
Li eQperat or u;

;<.: u(0);
y =u(l);
z = u(2);

will load the zero-th component of u into x, thefirst into y, and so forth.

35



In addition to these, the binary operator caret, " , placed betweentwo Li eQper at or stakestheir commutator, and
between two Jet s, performs a Poisson bracket. We delay its description to Section 4.8.

All binary operators except concatenation, which has its own subtleties, check to be sure that their two operands
have the same reference point. If they do not, then an error message is written on the standard output, and the applica-
tion program is stopped. Of course, the replacement operator, =, automatically sets the reference point of itsleft-hand
operand to that of the right-hand one.

45 Transcendental functions

Most of the C++ transcendental functions available for “doubl e” variables have been written for Jet variables as
well. Specifically, the MXYZPTLK library currently contains the functions sin, cos, tan, asin, acos, atan, exp, sinh,
cosh, tanh, log, 10g10, pow, sgrt, and w (the complex error function). Except for pow, each takes a Jet argument and,
asonewould expect, returnsaJet result. Two signaturesareavailablefor pow: Jet pow( const Jet&, int )

andJet pow( const Jet& double ).

4.6 Selection methods

(a) double Jet::standardPart 0

(b) double Jet::derivative (int* m)

(c) double Jet::weightedDerivativé int* m)

(dyvoid T ::standardPart (double* x) Note: T iseither aMap
(e) void T ::derivative (int* m, double* x) or aLieOperator.

(f) void T ::weightedDerivativéint* m, double* x) W iseither a Jet,
(g W W ::filter (int wgtLo, int wgtHi ) aMap, or aLieOperator.
(hyw W ::filter (char (*f) (const int*, double) [])

A number of methods access parts of Jet variableswithout changing thevariable. AsaJet member function, .stan-
dardPart, returns as its value the image of the reference point, f(u,).8 Asa LieOperator method, it accepts an array
pointer (that is, the name of an array) as argument and loads the “ standard parts’ of all its componentsinto this array.
For example:

doubl e X[ 8];
Li eQperator v;

y.standartPart( x );
if( x[3] == y(3).standartPart() ) cout << "All is OA\n"

8The name of this method is athrowback to the days when connections between DA and nonstandard analysis were being stressed.

36



The .derivative and .weightedDer ivative routines return the value of a specified derivative or component of the
polynomial representative of the jet. Their argument is interpreted as the name of an integer array containing the in-
dices of the desired derivative. For example, if f modelsajet containing f : R® — R, at the point w, then the derivative
051 (X)/0%0x30x3|x—w Can be obtained as follows.

Jet f;
doubl e d, W3];
staticint mf] ={ 1, 3, 2 };

Jet::Setup( 3, 10, w);

d = f.derivative( m);

The .weightedDerivativereturnsapolynomial coefficient, whichisthederivative weighted by factorialsof theindices.
These are, according to Eq.(2), the actual coefficients which would appear in the truncated polynomial representation
of f, andthey, not thederivatives, aretheactual numbersstoredinaJet variable.® Thus, if wereplace. deri vat i ve
with. wei ght edDer i vat i ve intheexampleabove, then thevaluereturned wouldbe (1! 3! 2!) =10 f () / 0%0X 0X3 | x—w.-

Aswith .standardPart, the Li eOper at or and Map versions of .derivative and .weightedDerivative load the
valuesof thederivativefor each component of the operator (or map) into the array pointed to by the additional argument,
double* x.

The filter methodsreturn a variable whose polynomial terms are a subset of those of the object on which they are
invoked. Letting W stand for either aJet , Map, or Li eOper at or, form (g) returns a W object with terms whose
degrees are bounded by the arguments, wgtL o and wgtHi, inclusively. Form (h) ismoreflexible, taking asitsargument
an array of decision functionswhich determinethetermsto befiltered into the W object to be returned. Asan example,
consider the code fragment,

char cO( const int* index, double /* value */ ) {

return index[0] == 0;

}

char c1( const int* index, double /* value */ ) {
return index[0] == 0 && index[1l] < 5;

}

char c2( const int* index, const conplex /* value */ ) {
return val ue > 100. 0;

}

typedef char (*FUNCPTR)(const int*, const conplex);
static FUNCPTR crit[] = { cO, cl1, c2 };

main() {

9In fact, the .derivative method first invokes .weightedDer ivative and then multiplies by the factorials.

37



Map f, g;
g=f.filter( crit );

Thefirst argument of the criterion functionsisinterpreted as an array of integerswhich represent the index of oneterm
in a polynomial; the second argument is interpreted as the value of the coefficient associated with the first argument.
Given this information, the function decides whether the term passes the filter. With maps, different filters can act on
different components of the map, which isthe reason for putting them into an array. In the fragment above, because of
their positionsinthe array cri t , cO examinesthetermsinf (0),clinf(1),andc2inf (2). Actingon

X 300xy2 — 12y3 +yz
f:(y>H< 32487 + 72y? )

z 137x%y? — 75xyz
X —12y3 +yz
g:ly |~ 72y°
z 137x%y?

4.7 Evaluation and concatenation

it would produce the result

(a) double Jet::operator() ( double* )

(b) Jet Jet::operator () (Jet* )

(c) Jet Jet::operator() (T& ) Note: T iseither aMap
(T T ::operator() (T& ) or aLieOperator.

A Jet variable storesthe coefficients of atruncated polynomial. Form (&) above enables one to evaluate that poly-
nomial at a point in the problem space. The argument isinterpreted as an array of doubl es containing the point of
evaluation. Jet sand Maps keep track of their own reference points, so that the user program need not subtract it ex-
plicitly in specifying the argument. (See the examplein Section 3.5.)

Let @ : R+, RNa+Ne pe two mappings of the problem space into itself which act like the identity on the
control sector. That is, only the dynamical coordinates change under the action of @ and y; the control variables are not
touched. The composite map, h = @o Y : u— @(P(u)), isamapping of the sametype. This operation is performed by
form (d) of .operator (). However, notice that although the reference pointsof h and s areidentical, say a, the reference
point of @is Y(a). The reference point must be explicitly declared, using the fixReference methods, before performing

concatenation.’® The demo in Section 3.7 provides an example showing how thisis done.

10WwWhat physicists call “concatenation,” mathematicians call “composition.”

38



When the control sector is not empty, all Map and Li eOper at or operations and methods assume that the first
Ny components refer to the dynamical sector and the final N to the control sector, these having been determined by
the Jet:: Setup function.

Keep in mind that all manipulations are performed on truncated polynomials. Thus, @o  will contain terms only
up to the degree of truncation. All higher degree terms which normally appear when concatenating two polynomials
areruthlessly eliminated.

Form (c) issimilar except that asinglejet isconcatenated withamap. Thus, if f.g: RY — Rand@: RN — RY, then
the correspondenceis:
g=fo@ < g =1f( Phi ); ,

whereg andf areJet variables, and Phi isaMap variable.

Form (b) of concatenation will work only if the problem space is one dimensional, for the operation f o g does not
make sense otherwise. Similarly to form (a), the argument isinterpreted as an array of Jet variables.

4.8 Differentiation and Poisson brackets

(a) Jet Jet ::D (int* m)

(b) Jet LieOperator ::operator” (Jet& )

(c) LieOperator operator”™ (LieOperator&, LieOperator& )
(d) Jet operator” (Jet& x,Jet& y)

Derivatives of jets are themselves jets, and each function listed above performs an action of differentiation. For
example, if u,v: R — R, and we want to implement the functional correspondence, v=0’u /axgaxlax“, using Jet
variables, this could be accomplished as follows.

Jet:: Setup( 5, 10 );
Jet u, v;
static int nf] { 2, 1, 0, 4, 0 };

v =uD m);
The Jet variable u itself would be unchanged by this method.

Taking derivatives lower the degree of a mathematical jet and, correspondingly, lowers the maximum accurate
weight of a Jet variable. Thus, if u stores derivatives of the real valued function u through weight w, and we define
v to be an mM-order derivative of u, then v can store the derivatives of v accurately only through weight w—m, all
derivatives of higher weight being unknown. Inthe small fragment shown above, only derivativesthrough order 3 will
be correctly storedinv, becausethecall Jet : : Set up requested only derivaties through order maximum order 10 be
storedinany Jet variable, particularly, in u. A private datum of each Jet variable keeps track of the maximum weight

39



of accurately stored derivatives, which may be less than the maximum weight declared by the Jet:: Setup function.
These data are used by and propagated through arithmetic operations, so that errors will not arise. In principle, an ap-
plications program could request a differentiation or invoke a sel ection method which cannot be carried out accurately
because of differentiationsexecuted previoudly. If thishappens, then the Jet classwill refuseto cooperateand will write
an error message to the standard output.

The badly overloaded operator symbol indicates the action of aLi eQper at or onaJet and two different
kinds of brackets. Form (b) implementsthe former.

g=Vf < g = Vf
Form (c) implements the commutator of two Lie operators, whichisitself a Lie operator.
U=[V,W] « U=VW

Finally, if the dynamical sector has even dimension, say Ny = 2n, it can be (and usually is) interpreted as a phase space
whose first n components are “ positions’ and whose second are “momenta.” The Poisson bracket isthen well defined,
and Jet implements this operation via form (d).

h={f,g} <« h =1"g

Because all these operation requires taking derivatives, the maximum accurate weight of the resultant is generally
smaller than that of its operands. This reduction does not occur, however, when the objects map their reference points
to the origin, for example, if the image of the reference point is zero under bothf and g. Again, MXYZPTLK stores
that information automatically so that the user program need not keep track of it explicitly.

ACKNOWLEDGEMENT

| wasindebted to Herbert Wilf for astimul ating discussion of hisranking algorithm[14, 15, 9] which is at the core of
evaluation and concatenation. Jim Holt extended the code for classes Jet and LieOper ator to implement classes JetC
and CLieOperator. | am aso grateful to him for using MXY ZPTLK in his own programs. His continually pushing
thislibrary to its limits has been repeatedly helpful in exposing weak points and suggesting improvements.

References

[1] RobertL.Andersonand Nail H. Ibragimov. Lie-Backlund Transformationsin Applications. Society for Industrial
and Applied Mathematics, Philadelphia, Pennsylvania, 1979. SIAM Studiesin Applied Mathematics.

[2] M. Berz. Differential algebra— anew tool. In Floyd Bennett and Joyce Kopta, editors, Proceedings of the 1989
|EEE Particle Accelerator Conference. IEEE, March 20-23, 1989. |EEE Catalog Number 89CH2669-0.

[3] Martin Berz. Nuclear Instruments and Methods, A258:431, 1987.

40



[4]

(5]
6]

(7]

(8]

(9]
[10]

[11]
[12]
[13]

[14]

[15]

Martin Berz. Differential algebraic description of beam dynamics to very high orders. Particle Accelerators,
24(2), March 1989. to be published.

Bruce Eckel. Using C++ . Osborne McGraw-Hill, Berkeley, 1989.

Etienne Forest, Martin Berz, and John Irwin. Normal form methodsfor complicated periodic systems: A complete
solution using differential algebraand lie operators. Particle Accelerators, 24(2), March 1989. To be published.

Leo Michelotti. Differential algebras without differentials: an easy C++ implementation. In Floyd Bennett and
Joyce Kopta, editors, Proceedings of the 1989 |EEE Particle Accelerator Conference. IEEE, March 20-23, 1989.
|EEE Catalog Number 89CH2669-0.

Leo Michelotti. Exploratory orbit analysis. In Floyd Bennett and Joyce Kopta, editors, Proceedings of the 1989
|EEE Particle Accelerator Conference. IEEE, March 20-23, 1989. |EEE Catalog Number 89CH2669-0.

Albert Nijenhuis and Herbert S. Wilf. Combinatorial Algorithms. Academic Press, New York, 1978.

L. B. Rall. Automatic differentiation: Techniquesand applications. In Lecture Notesin Computer Science No. 120.
Springer-Verlag, 1981.

L. B. Rall. The arithmetic of differentiation. Mathematics Magazine, 59:275-282, 1986.
Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Massachusetts, 1986.

Roy Thatcher. Programming in C - aword of caution. Fermilab Computing Division Newsletter, Vol. XVIII,
No. 1, pp. 3-4, Jan-Feb 1990.

Herbert S. Wilf. A unified setting for sequencing, ranking, and selection algorithms for combinatorial objects.
Advances in Mathematics, 24:281-291, 1977.

Herbert S. Wilf. A unified setting for selection algorithms(11). Annalsof Discrete Mathematics, 2:135-148, 1978.

41



