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1 Introduction

If you need to calculate derivatives of complicated functions and find yourself either taking finite differences or writing
the derivatives algebraically and then translating the expressions into source code, you may want to consider using au-
tomatic differentiation (AD). AD exploits the classic theorems of differential calculus to propagate information about
derivatives through arithmetic operations. In this way, derivatives of a function can be calculated using the same pro-
gram that calculates the function itself. Because no approximations are made, derivatives are calculated with machine
accuracy, avoiding the errors inherent in finite differences, an especially important consideration when higher order
derivatives are required.

MXYZPTLK is a library of C++ classes – or “objects” – for performing automatic differentiation. Originally writ-
ten at Fermilab in 1989, with a “User’s Guide” provided in 1990, it has undergone refinements and improvements over
the last six years. It was originally announced outside Fermilab in Automatic Differentiation of Algorithms: Theory,
Implementation, and Application (SIAM Press, 1991) and has been used in a variety of contexts. MXYZPTLK was
the first implementation of AD which exploited object-oriented techniques (in C++) from the beginning.

Those who have not yet been exposed to AD/DA are invited to read the references in the bibliography. Here we will
describe how to use Version 3.1 of MXYZPTLK, a C++ AD/DA library. In the next section we will explain quickly the
mathematical models upon which the software is based. Section 3 contains a number of small programs demonstrating
the use of AD/DA objects in MXYZPTLK. This document is motivated by the idea that people learn about objects more
quickly by scanning a few examples of their use than by reading syntax rules governing their behavior: the reference
section. Thus, Section 3 is its major piece, intended to jump start the reader. The shorter Section 4 will be the (still
incomplete) “reference,” devoted to describing the syntax for using objects, methods, and functions contained in the
MXYZPTLK library.
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2 Concepts

Let f : RN � R and g : RN � R � be two “sufficiently” differentiable functions defined in an open neighborhood,U � RN �
of uo

� U � We will say that f and g are “nth order equivalent,” and write f � n g � at uo iff1

f
�
u �	� g

�
u ��
 O

�
���
u � uo

��� n� 1 ���
This property is easily seen to be an equivalence relation among functions, which then enables us to define the equiv-
alence class �

f � n � uo � ��� g
�

f � n g at uo � � (1)

which is called a “jet.” It is identified by a triple containing a representative function, an integer, and a reference point.

The simplest element of any jet is a polynomial in the components of
�
u � uo ��� Let us define

the operator Dm � N � 1

∏
k� 0

1
mk!

∂
∂uk

mk � and the shorthand am � N � 1

∏
k� 0

amk
k �

where m is an array of N non-negative integers (the “index” array).2 Let P be the polynomial satisfying,

P
�
u ��� n

∑
m � 0

cm
�
u � uo � m � where cm � �

Dm f �
� uo � � (2)

where the formal sum is taken over arrays of non-negative integers, m satisfying (a) 0 � mk � nk � for all k, and (b) ∑k nk � n �
With the usual assumptions about differentiability, it follows that f � n P� and P can be used as the representative of the
jet containing f . If this connection needs to be emphasized, we will write Pf for the polynomial.

We will interchangably refer to ∑k mk as the degree of the polynomial term, its “weight,” or the order of the asso-
ciated derivative.

The important point is this: the equivalence property survives arithmetic operations. If f1 � n f2 and g1 � n g2 at uo,
then

�
f1 op f2 ��� n

�
g1 opg2 � at uo, where the operation symbol op stands for addition, subtraction, multipliciation, or

division. Thus, to find the polynomial representative of the jet containing f opg it suffices to perform the corresponding
arithmetic operation on the polynomials equivalent to f and g and truncate the answer at degree N. This is called
“truncated polynomial algebra,” or “truncated power series algebra,” and it is exactly what is needed to implement jet
mathematics on a computer. We will refer to N as the “degree of truncation.”

Addition and subtraction are the operations easiest to implement. We merely add the corresponding coefficients of
the truncated polynomials.

Dm � f � g ��� Dm f � Dmg � (3)

Multiplication is accomplished easily using Leibniz’s rule,

Dn � f  g �!� n

∑
m� 0

�
Dm f � � Dn � mg ��� (4)

1This is an informal definition. It could easily be made more precise and incomprehensible. For example, something like:"
C # R

"
U # RN $ u # U : % f & u ')( g & u'*%,+ C % % u ( uo % % n- 1 . However, there is no excuse here for this level of formality.

2It is a nuisance to start the product at “k / 0.” This is done to maintain consistence with the C and C++ array convention.
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Truncation means that ∑k nk 0 � N � Division is accomplished by a form of repeated multiplication. Notice that by
combining f  g � w with Eq.(4) we can write a recursive procedure for defining the higher orders of v̂ in terms of its
lower orders,

Dng � 1
f

Dnw � n

∑
m� 0

�
Dm f � � Dn � mg � (5)

starting with g � w 1 f � Eqs.(3), (4), and (5) form the basis for MXYZPTLK’s arithmetic algorithms.

Building on jets, MXYZPTLK includes an object for modeling the action of Lie operators. For this, the “problem
space” of coordinates is partitioned into two subspaces, as determined by the application: a “phase space,” or “dynam-
ical sector,” of dimension Nd, whose coordinates we will write as u � and a “control sector,” of dimension Nc � N � Nd �
with coordinates written as a. For example, suppose that we are studying the restricted three-body problem: say, the
motion of a small satellite under the influence of a planet and its moon. The dynamical sector would represent the six-
dimensional phase space, corresponding to the initial momentum and position of the satellite. However, if we wanted
to examine such questions as the sensitivity of the final state to the masses of the planet and moon, then we would add
these as “control” coordinates of the problem space. The “index array” associated with a derivative is the ordered array
of integers which specify the derivative. For example, if the problem space is 3 dimensional, say x � �

u0 � u1 � u2 �2� then
the index array associated with ∂6 f

�
u ��1 ∂u0∂u3

1∂u2
2 would be

�
1 � 3 � 2 �2� The sum of the indices (the components of an

index array) will be varyingly referred to as the derivative’s “weight,” its “order,” or its “degree.”

By design, Lie operators act only on the dynamical coordinates. In the context of this discussion, a mathematical
Lie operator can be defined as a differential operator of the form,

V � v
�
u � a �� ∂

∂u
� (6)

Of particular importance is the exponential map, which maps functions onto functions, formally obtained by the
expression,

g � eV f � ∞

∑
k� 1

1
n!

Vn f � (7)

Notice that if f � n g � then in general, V f � n � 1 Vg � Intepreted as acting on a jet, a Lie operator will lower its order.
This can be mitigated by restricting consideration to Lie operators whose v, defined in Eq.(6), satisfies

v
�
u � a �	� O

�!���
u � uo

�3� �4�
This is essential in order to implement an exponential map, with its repeated application of V. In addition, for an exact
implementation, we should require that

v
�
u � a ��� O

�5�3�
u � uo

�3� 2 ���
This condition means that the nonvanishing term of lowest degree in Pf has smaller degree than the corresponding term
in PV f . Upon repeated application of V, the lowest nonvanishing degree eventually becomes larger than the order of
the jet, and all but a finite number of terms in Eq.(7) can be ignored. This condition provides Lie operators that convert
AD into an exact differential algebra (DA). We will illustrate in the next section how these operators are implemented
in MXYZPTLK.

A mapping can be thought of as an array of Nd functions,

f : RNd 6 RNc � RNd �
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Alternatively, we can write this as an array of functions,

f : RN 6 RN �
which acts as the identity on the control sector. This approach is formally more convenient when one wants to consider
concatenating mappings: h � g 7 f � Written with arguments, h

�
u � a ��� g

�
f
�
u � a �2� a � in the first picture becomes the more

natural h
�
z ��� g

�
f
�
z �8� in the second, where z � �

u � a � T �
Because we are going to model an algebra of functions, of special importance are the coordinate functions them-

selves, which are projections onto the components of u. For example, if u � �
u0 � u1 � u2 � T � we could define the coordi-

nate functions x, y, and z according to x
�
u ��� u0 � y

�
u �9� u1 � and z

�
u ��� u2 � We could then write a new function, say

f � e � x2
siny �

and this is interpreted as an equation relating functions to functions. Notice that it would be incorrect to write,

f
�
x � y ��� e � x2

siny ?? �
as this would have a completely different meaning, in fact, no meaning at all in the current context. Instead, we can
write something like,

f
�
u ��� e � x2

siny � u� � for all u �

Functions are evaluated numerically, not symbolically, as jets. The triplet shown in Eq.(1) is stored, with f given
by the truncated polynomial representation of Eq.(2). For the example given above, we would begin the calculation
with the coefficients,

x
�
u � � c � 0 : 0 : 0� � 0 � c � 1 : 0 : 0� � 1

y
�
u � � c � 0 : 0 : 0� � 0 � c � 0 : 1 : 0� � 1

z
�
u � � c � 0 : 0 : 0� � 0 � c � 0 : 0 : 1� � 1 �

Numerical jets are built from such starting points using the rules of Eqs.(3), (4), and (5). Of course, this all happens
internally and is transparent to the user, who simply writes an application as though using ordinary double precision
variables. Programs implementing this example and others are provided in the next section for illustration.

One final note: there is no reason to restrict consideration to real coordinates. What we have written for real func-
tions can be extended to complex functions as well. Such an extension was indeed included in MXYZPTLK for the
purpose of doing normal form calculations conveniently.
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3 Examples

MXYZPTLK contains the classesJet, coord,LieOperator,Map, and their complex counterpartsJetC,coordC,
CLieOperator, andCMap. We display below a few sample programs which illustrate various features of the MXYZPTLK
library. It is hoped that they are sufficiently instructive to act as prototypes for your own calculations.

No examples were included involving arithmetic on Map and LieOperator objects, but it can be done notwith-
standing. They possess the properties of a vector space. It is possible to add and subtract Maps and LieOperators
together, and to multiply them by double, complex, or Jet objects.

3.1 Evaluating a derivative

This first demo simply prints the value of the derivative,

∂
�
e � x2

siny ��1 ∂xm∂yn �
xo : yo �

where the parameters xo � m � yo � n are entered on the command line. The source code is shown below, followed by a few
sample uses and commentary.

Source: dfr.cc

1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 5 ) {
4 cout << "\nUsage: " << argv[0]
5 << " x n_x y n_y\n"
6 << endl;
7 exit(0);
8 }

9 int deg [2];
10 deg[0] = atoi( argv[2] );
11 deg[1] = atoi( argv[4] );

12 Jet::Setup( 2, deg[0] + deg[1] );

13 coord x( atof( argv[1] ) ), y( atof( argv[3] ) );

14 cout << "Answer: "
15 << ( exp(-x*x) * sin(y) ).derivative( deg )
16 << endl;

17 }
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Output

hazel 1: dfr

Usage: dfr x n_x y n_y

hazel 2: dfr 0 4 0 5
Answer: 12
hazel 3: dfr 1 3 -1 7
Answer: -0.795064

Comments

Line 1: The header file mxyzptlk.rsc must be included near the top of any MXYZPTLK user program.

Lines 3-8: Prints a little “usage” message if the program name is written without arguments. (See the “hazel 1” prompt
above.)

Lines 9-11: The integer array deg will carry the indices of the desired derivative; that is, it carries m and n. The
ordering is determined by the order in which the coord variables have been declared. In this case, x came first, so x
is internally associated with index 0, and y, with index 1. Thus, to find ∂

�
e � x2

siny ��1 ∂xm∂yn �
xo : yo � we set deg[0] to

m and deg[1] to n before using it as the argument to the .derivative member function, in Line 15.

Line 12: The routine Jet::Setup must be called before performing AD/DA manipulations. In this call, the first argu-
ment tells the library the number of independent variables, and the second indicates the maximum order of derivative
desired. Since the indices, m and n, have been given on the command line and entered into the array, deg, the second
argument is set to their sum.

Line 13: Variables x and y are declared as coord objects, or “coordinates.” coords are the most basic building blocks
for AD calculations, the “independent variables” of the function to be differentiated. They implement the projection
functions described at the end of Section 3. The two arguments from the command line set their values, which in turn
determine the point at which the function to be constructed will be differentiated.

Lines 14-16: Finally, the function e � x2
siny is constructed, and, in the same line, the requested derivative is sent to the

output stream. Notice that arithmetic operations on coord objects do not return coord objects; they return Jet objects.
(A coord is, of course, just a special kind of Jet.)

3.2 Jets

The previous example was simple enough that there was no need to store the calculation in a variable. If it is necessary
or desirable to do so, the appropriate variable type is called a Jet. This example shows Jets being used both to store
the results of calculations and to return them from functions.

Source: g5.cc

1 #include "mxyzptlk.rsc"
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2 Jet g( const Jet& x, int n ) {
3 Jet z = 0.0;
4 Jet term;
5 term = x;
6 for( int k = 1; k <= n; k++ ) {
7 z += term / ( (double) k );
8 term *= x;
9 }
10 z.stacked = 1;
11 return z;
12 }

13 main() {
14 Jet::Setup( 3, 6 );
15
16 coord x(0.0), y(0.0), z(0.0);

17 Jet a;
18 a = x*y + y*z + z*x;
19 a.printCoeffs();
20 ( g( a, 3 )*g( sin(a), 5 ) ).printCoeffs();

21 }

Output:

hazel 1: g5

Count = 4, Weight = 2, Max accurate weight = 6
Reference point:
0.000000e+00 0.000000e+00 0.000000e+00

Index: 0 0 0 Value: 0.000000e+00
Index: 0 1 1 Value: 1.000000e+00
Index: 1 0 1 Value: 1.000000e+00
Index: 1 1 0 Value: 1.000000e+00

Count = 17, Weight = 6, Max accurate weight = 6
Reference point:
0.000000e+00 0.000000e+00 0.000000e+00

Index: 0 0 0 Value: 0.000000e+00
Index: 0 2 2 Value: 1.000000e+00
Index: 1 1 2 Value: 2.000000e+00
Index: 1 2 1 Value: 2.000000e+00
Index: 2 0 2 Value: 1.000000e+00
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Index: 2 1 1 Value: 2.000000e+00
Index: 2 2 0 Value: 1.000000e+00
Index: 0 3 3 Value: 1.000000e+00
Index: 1 2 3 Value: 3.000000e+00
Index: 1 3 2 Value: 3.000000e+00
Index: 2 1 3 Value: 3.000000e+00
Index: 2 2 2 Value: 6.000000e+00
Index: 2 3 1 Value: 3.000000e+00
Index: 3 0 3 Value: 1.000000e+00
Index: 3 1 2 Value: 3.000000e+00
Index: 3 2 1 Value: 3.000000e+00
Index: 3 3 0 Value: 1.000000e+00

Comments:

Lines 17-18: Here we declare the variable a to be of type Jet and set its value to be the symmetric polynomial
xy 
 yz 
 zx �
Line 19: The member function Jet::printCoeffs() prints the coefficients of the truncated polynomial. This command,
“a.printCoeffs(),” results in the first seven (non-void) lines of output. “Count = 4” means that there are four terms re-
tained in the polynomial. “Weight = 2” tells us that the degree of the polynomial is 2, while “Max accurate weight =
6” indicates that Jet::Setup requested terms of highest degree 6 were to be carried. The Jet’s reference point,

�
0 � 0 � 0 ���

shown in the next two lines of output, was set in Line 16 of the source, when the coord variables, x, y, and z were de-
clared. Finally, the list of indices and values record the terms of the polynomial: indices represent the exponents and
values, the coefficients. Thus, because of the ordering, the line “Index: 0 1 1 Value: 1.000000e+00” tells us that the
x0y1z1 term of a has coefficient 1. The next two lines provide the same information for the x1y0z1 and x1y1z0 terms. In
other words, a models the polynomial, xy 
 xz 
 yz � as it should.

Lines 2-12: These lines define a Jet function that computes the polynomials,

gn
�
x �	� n

∑
k� 1

xk 1 k
We put off a discussion of the cryptic Line 10 until later.

Line 20: Here we print the information about the polynomial,

g3
�
a � g5

�
sina �2� where a � xy 
 yz 
 zx �

truncated at degree 6 (see Source Line 14). The Jet function g is invoked twice, the results multiplied together, and
the member function Jet::printCoeffs() invoked, which, as before, sends the result to the output stream. This results
in the second chunk of output, which indicates the polynomial, y2z2 
 2xyz2 
 2xy2z 
 x2z2 
 2x2yz 
 x2y2 
 y3z3 

3xy2z3 
 3xy3z2 
 3x2yz3 
 6x2y2z2 
 3x2y3z 
 x3z3 
 3x3yz2 
 3x3y2z 
 x3y3. I leave it to the reader to explain why all
the coefficients are integers and to determine whether this remarkable property extends to terms of higher degree.

Lines 4-5 and 17-18: The Jets term and a are first declared and then assigned values, in separate lines. Each could
have been combined into one line, as in “Jet term = x; .”3 However, there is a subtle reason for not doing this. Compilers
interpret the statement “Jet term = x;” as equivalent to “Jet term( x );” and invoke the copy constructor, not the member
function Jet::operator=, to assign the value. Because of the way Jet variables store data,4 this may result in an error.

3I defy you to punctuate this sentence correctly.
4The envelope-letter idiom is employed.
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Therefore, it is recommended that Jets always be declared and assigned values on separate lines.

3.3 Differentiation

In Section 3.1 we printed the value of a particular derivative of a function. The corresponding AD operation is to take
the derivative of a function, thereby creating a new function. The Jet method which does this is Jet::D. We will illustrate
its use by calculating coefficients of the Hermite polynomials,

Hn
�
x �9� � � 1 � nex2 dn

dxn e � x2 � (8)

Source: Hermite.cc

1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 2 ) {
4 cout << "\nUsage: " << argv[0] << " n"
5 << endl;
6 exit(0);
7 }

8 int n = atoi( argv[1] );

9 Jet::Setup( 1, 2*n );
10 coord x( 0.0 );
11 Jet f, g;
12 int d = 1;

13 f = exp( - x*x );
14 g = f;

15 int k = 0;
16 cout << "Results for k = " << k << endl;
17 ( g / f ).printCoeffs();
18 for( k = 1; k <= n; k++ ) {
19 g = - g.D( &d );
20 cout << "Results for k = " << k << endl;
21 ( g / f ).printCoeffs();
22 }

23 }

Output:
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hazel 1: Hermite 4
Results for k = 0

Count = 1, Weight = 0, Max accurate weight = 8
Reference point:
0.000000e+00

Index: 0 Value: 1.000000e+00

Results for k = 1

Count = 2, Weight = 1, Max accurate weight = 7
Reference point:
0.000000e+00

Index: 0 Value: 0.000000e+00
Index: 1 Value: 2.000000e+00

Results for k = 2

Count = 3, Weight = 8, Max accurate weight = 6
Reference point:
0.000000e+00

Index: 0 Value: -2.000000e+00
Index: 2 Value: 4.000000e+00

Results for k = 3

Count = 4, Weight = 7, Max accurate weight = 5
Reference point:
0.000000e+00

Index: 0 Value: 0.000000e+00
Index: 1 Value: -1.200000e+01
Index: 3 Value: 8.000000e+00

Results for k = 4

Count = 5, Weight = 8, Max accurate weight = 4
Reference point:
0.000000e+00

Index: 0 Value: 1.200000e+01
Index: 2 Value: -4.800000e+01
Index: 4 Value: 1.600000e+01
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Comments:

Line 9: The value of n has been entered on the command line. The reason for setting the second argument of Jet::Setup
to 2n rather than n will be explained shortly.

Line 10: It would be a useful exercise to understand why the reference point must be zero. How would the results
change if a different reference were chosen? (Try it!)

Lines 13-14: f is assigned the jet containing e � x2 � gwill take on the values
� � 1 � k dk

dxk e � x2 � for k � 0 �,�,� n � so we begin

by setting it equal to f.

Line 19: Here is where the differentiation is done. In each step of the loop (Lines 18-22), a single derivative of g is
taken and stored back into g. The order of the derivative is determined by the argument of Jet::D, which is an array
of doubles, just like that of Jet::derivative. In this case, since the problem space is one dimensional, the address, &d,
serves the same purpose as the name of an array. Notice that the same effect, apart from the sign, would have been
obtained somewhat less efficiently by substituting “g = f.D(&k)” for Line 19.

Lines 17 and 21: These are the output lines. Looking back to Eq.(8), we see that it is only necessary to print out the
coefficients from g/f to obtain the desired polynomials. Looking at the output, we identify

H0
�
x �;� 1

H1
�
x �;� 2x

H2
�
x �;� 4x2 � 2

H3
�
x �;� 8x3 � 12x

H4
�
x �;� 16x4 � 48x2 
 12

Line 9 (again): Now let us return to the arguments of Jet::Setup. A Jet variable carries polynomial coefficients
only up to the particular order determined by Jet::Setup. When a derivative operation is performed, the degree of the
representative polynomial decreases by one. This is reflected in the “Max accurate weight” field in the output. We
begin with a jet of degree 8. At each step through the loop, a single differentiation is done, so that by the end we
have a jet of “maximum accurate weight” 4, corresponding to the degree of the requested polynomial. The information
about accuracy is carried through arithmetic operations, so that the “maximum accurate weight” ofg/f is automatically
determined by g, not f. Had we begun with a jet of smaller degree, the final polynomial would not have contained all
the coefficients required. Thus the argument of Jet::Setup was determined by our prior knowledge that Hn

�
x � is a

polynomial of degree n.

3.4 Maps and Jacobians

A Map is an object that models a multi-dimensional differentiable function: φ : Rn � Rn � This example prints the Jaco-
bian matrix of the transformation from Cartesian to polar coordinates, ∂

�
x � y� z ��1 � r� θ � φ ��� and its inverse, ∂

�
r� θ � φ ��1 � x � y� z ���

at a point specified on the command line.

Source: survey.cc
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1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 4 ) {
4 cout << "\nUsage: " << argv[0]
5 << " <r> <theta (deg)> <phi (deg)>\n"
6 << endl;
7 exit(0);
8 }

9 const double d2r = M_PI / 180.0;
10 MatrixD M( 3, 3 );
11 Jet::Setup( 3, 1 );

12 coord r ( atof( argv[1] ) ),
13 theta ( d2r*atof( argv[2] ) ),
14 phi ( d2r*atof( argv[3] ) );
15 Map position;

16 position.SetComponent( 0, r * sin( theta ) * cos( phi ) );
17 position.SetComponent( 1, r * sin( theta ) * sin( phi ) );
18 position.SetComponent( 2, r * cos( theta ) );

19 M = position.Jacobian();
20 cout << M << "\n\n" << M.inverse() << endl;
21 }

Output:

hazel 1: survey 1. 30. 45.
( 0.35355339, 0.61237244, -0.35355339, )
( 0.35355339, 0.61237244, 0.35355339, )
( 0.8660254, -0.5, 0, )

( 0.35355339, 0.35355339, 0.8660254, )
( 0.61237244, 0.61237244, -0.5, )
( -1.4142136, 1.4142136, 0, )

Comments:

Lines 12-14: The coordinates
�
r� θ � φ � are read from the command line and coord variables are declared with these

values. Multiplication by d2r merely converts from degrees to radians.

Lines 15-18: A Map variable is declared and its components set. The variable position models the function,

φ :
�
r� θ � φ �	<� �

x � y� z �!� �
rsinθ cosφ � rsinθ sinφ � rcosθ ���

The member function Map::SetComponent is used to set the corresponding components of position.
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Lines 10, 19-20 A 3 6 3 Matrix of double precision numbers,M, is declared, and the member function Map::Jacobian()
is used to load M with the Jacobian of position. Finally, in Line 20, the Matrix and its inverse are sent to the output
stream.

3.5 Evaluation

A Jet variable models a mathematical Jet by containing the coefficients of its polynomial representative. The member
function Jet::operator() provides a mechanism for evaluating that polynomial. We’ll illustrate that by evaluat-
ing e � x2

siny using its Jet representative and comparing to the exact value.

Source: ev.cc

1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 4 ) {
4 cout << "\nUsage: " << argv[0]
5 << " x y n\n"
6 << endl;
7 exit(0);
8 }

9 int deg = atoi( argv[3] );
10 Jet::Setup( 2, deg );

11 coord x( atof( argv[1] ) ), y( atof( argv[2] ) );
12 Jet f = exp(-x*x) * sin(y);

13 double point[2];
14 while(1) {
15 cout << "Enter x and y: ";
16 cin >> point[0] >> point[1];
17 cout << "Jet answer: "
18 << f( point )
19 << " Exact answer: "
20 << sin( point[1] ) * exp( - point[0]*point[0] )
21 << endl;
22 }

23 }

Output:

hazel 1: ev 1 1 16
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Enter x and y: 1 1
Jet answer: 0.30956 Exact answer: 0.30956
Enter x and y: 0.4 1.6
Jet answer: 0.85178 Exact answer: 0.85178
Enter x and y: 2 2
Jet answer: 0.0166206 Exact answer: 0.0166544
Enter x and y: 0 0
Jet answer: 4.05366e-05 Exact answer: 0
Enter x and y: ˆC

hazel 2: ev -0.5 1.5 8
Enter x and y: -1.0 1.0
Jet answer: 0.309656 Exact answer: 0.30956
Enter x and y: 0 0
Jet answer: -0.00358171 Exact answer: 0
Enter x and y: -1.5 0.5
Jet answer: 0.0870872 Exact answer: 0.0505311
Enter x and y: ˆC

Comments:

Line 11: As in Section 3.1, the reference point is specified on the command line of the program. coord variables
are set in preparation for calculations.

Lines 12 and 18: Most of this program is similar to what we’ve seen already. Line 18 contains the new operation.
After f is constructed in Line 12, it is used in Line 18 to evaluate the polynomial that it represents. The loop in Lines
14-22 repeats indefinitely, and the results for several values ofpoint can be seen in the Output. On the command line,
we have specified that

�
x � y �	� �

1 � 1 � be the reference point of the problem, and that the representative polynomials be
truncated at degree 16. The rest of the program need not use the reference point explicitly. In particular, Line 18 makes
no mention of it. Thus, for example, to find f

�8�
0 � 4 � 1 � 6 �8� we enter 0.4 and 1.6, as would be most natural. The Jet itself

knows its own reference point and subtracts it automatically before evaluating the polynomial.

3.6 Filters

Filters are available to create new Jets by selecting a subset of the coefficients contained in an already existing Jet. The
most basic filter simply selects coefficients whose weights lie with a given range. We illustrate that by calculating the
number e using two different power series.

Source: evaltest.cc

1 #include "mxyzptlk.rsc"

2 main() {
3 double r[3], s[3];

4 Jet::Setup( 3, 7 );
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5 coord x(0.5), y(0.4), z(0.0);
6 Jet u, v;

7 u = exp( x );
8 v = exp( x + y + z );

9 r[0] = 1.0; s[0] = 0.33;
10 r[1] = 0.0; s[1] = 0.33;
11 r[2] = 0.0; s[2] = 1.0 - s[0] - s[1];

12 for( int w = 1; w <= 7; w++ ) {
13 printf( "%d: %lf %lf \n",
14 w,
15 (u.filter( 0, w ))( r ),
16 (v.filter( 0, w ))( s )
17 );
18 }
19 }

Output

hazel 1: evaltest
1: 2.473082 2.705563
2: 2.679172 2.717861
3: 2.713520 2.718271
4: 2.717814 2.718282
5: 2.718243 2.718282
6: 2.718279 2.718282
7: 2.718282 2.718282

Comments

Comment 1: We shall expand two functions, u
�
x � y� z �!� exp

�
x � and v

�
x � y� z ��� exp

�
x 
 y 
 z ��� both about the point�

x � y� z ��� �
0 � 5 � 0 � 4 � 0 � 0 �2� The problem space is therefore three dimensional. We shall retain terms only up to degree

seven.

Comment 2: In setting the points of evaluation, the application program need not remember or explicitly refer to the
reference point: the Jet variables know themselves where they were evaluated. (In fact, we even could have expanded
u and v about two different reference points.)

Comment 3: In this loop we filter Jet variables of various weights up to the maximum of seven. In this way we can
follow the accuracy of the series as the number of terms increases. The reader should be able to explain easily the
greater accuracy of one series over the other, as shown in the output.
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3.7 Concatenation

The object of this exercise is to compute a derivative of two functions which have been concatenated together. The
problem space is two dimensional, u � �

x � y � T � Consider the two mappings,

a
�
u �;� xy2 
 exp

�
x 
 y �

cos
�
yx2 �

x 
 2
� (9)

b
�
u �;� sinxcosy

exp
�
x3 �

xy
� (10)

and their composition,
c
�
u ��� b

�
a
�
u �8�=� (11)

We shall calculate both components of ∂5c 1 ∂x3∂y2 �
w� � 0 : 0� �

Source: concattest.cc

1 #include "mxyzptlk.rsc"

2 main() {
3 Jet q, v, w, z;
4 static int index[] = { 3, 2 };
5 double answer[2];

6 Jet::Setup( 2, 7, 2 );

7 coord x(0.0), y(0.0);
8 Map a, b;

9 a.SetComponent( 0, q = x*y*y + exp( x + y ) );
10 a.SetComponent( 1, v = cos( y*x*x ) / ( x + 2.0 ) );

11 w = sin(q) * cos(v);
12 z = exp( q*q*q ) / ( q*v );

13 x.set( a(0).standardPart() );
14 y.set( a(1).standardPart() );
15 b.fixReferenceAtEnd( a );

16 b.SetComponent( 0, sin(x) * cos(y) );
17 b.SetComponent( 1, exp( x*x*x ) / ( x*y ) );

18 b(a) .derivative( index, answer );

19 cout << "Using composition: " << answer[0] << " "
20 << answer[1] << endl;
21 cout << "Using explicit formulas: " << w.derivative( index ) << " "
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22 << z.derivative( index ) << endl;
23 }

Output:

hazel 1: concattest
Using composition: -25.2155 50880.8
Using explicit formulas: -25.2155 50880.8

Comments:

Line 7: There was really no need to carry terms of degree seven for this calculation: five would have been sufficient.
Notice that Jet::Setup is invoked after Jet and Map variables have been declared in Lines 3-4. This is not good prac-
tice, but it was done here to illustrate this particular capability of MXYZPTLK. It is permitted to declare variables
before invoking Jet::Setup. This allows for the possibility of giving Jet variables global scope. It is only necessary
that Jet::Setup be used before carrying out operations on these variables.

Lines 9-10 and 16-17: The Jets a and b are initialized so as to model the mappings a and b appearing in Eqs.(9)
and (10). In the process of doing that, the components of a are loaded into the Jets q and v for later use.

Lines 13-15: Before setting the components of b, the reference point must be adjusted. When a was declared, it was
assigned the same reference point as a, a reference determined by the declarations in Line 7. However, since we are
going to concatenate b with a to form b(a), if

�
0 � 0 � is the reference point of a, then we must reset the reference point

of b to be > �
� 0 � 0 �
�2� This is done with the member functions Map::fixReferenceAtEnd, which adjusts the reference
point of a mapping to the image of the reference point of another mapping. In addition, the coordinates x and y are
reset to the new reference point, using coord::set, prior to their reuse Member function Jet::standardPart returns the
polynomial coefficient c0 and is used here to find > �
� 0 � 0 �8���
Line 18: First the twoJetsb anda are composed, in accordance with Eq.(11). The member functions Map::derivative
is used to load the desired derivatives into the array answer.

Lines 19-23: Using b(a) and using w and z are compared. The results should be, and are, identical. Notice the dif-
ferences between Jet::derivative and Map::derivative. The latter evaluates the desired derivative for each component
of the Map and returns the resulting numbers in an array argument.

3.8 Inversion

If the function f : Rn � Rn is invertible at the reference point uo, then the member function Map::Inverse allows one
to compute the (multidimensional) Jet corresponding to the local inverse map, f � 1 at the reference point f

�
uo ��� In the

demo below we invert the function

f :
x
y
z

<�
3 
 x 
 3y 
 xy � yz

� 1 
 y � x 
 z 
 xz 
 y2

2 
 z 
 2x 
 yz � xyz

at uo � � � 1 � 2 � 3 � 5 � 2 � 1 � T � The Output section is rather lengthy, but comments do indeed follow it, as usual.
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Source:

1 #include "mxyzptlk.rsc"

2 main() {
3
4 Jet::Setup( 3, 4, 3 );

5 coord x(-1.2), y(3.5), z(2.1);
6 Map f, u;

7 f.SetComponent( 0, 3.0 + x + 3.0*y + x*y - y*z );
8 f.SetComponent( 1, -1.0 + y - x + z + x*z + y*y );
9 f.SetComponent( 2, 2.0 + z + 2.0*x + y*z - x*y*z );

10 u = f.Inverse();

11 cout << "\n====== f.printCoeffs(); ====================\n" << endl;
12 f.printCoeffs();
13 cout << "\n====== u.printCoeffs(); ====================\n" << endl;
14 u.printCoeffs();
15 cout << "\n====== f(u).printCoeffs(); =================\n" << endl;
16 f(u).printCoeffs();
17 cout << "\n====== u(f).printCoeffs(); =================\n" << endl;
18 u(f).printCoeffs();
19 }

Output:

====== f.printCoeffs(); ====================

************ Begin LieOperator::printCoeffs ********
Weight: 3

******************
**** Component index = 0

Count = 6, Weight = 2, Max accurate weight = 4
Reference point:
-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 7.500000e-01
Index: 0 0 1 Value: -3.500000e+00
Index: 0 1 0 Value: -3.000000e-01
Index: 1 0 0 Value: 4.500000e+00
Index: 0 1 1 Value: -1.000000e+00
Index: 1 1 0 Value: 1.000000e+00
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******************
**** Component index = 1

Count = 6, Weight = 2, Max accurate weight = 4
Reference point:
-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 1.553000e+01
Index: 0 0 1 Value: -2.000000e-01
Index: 0 1 0 Value: 8.000000e+00
Index: 1 0 0 Value: 1.100000e+00
Index: 0 2 0 Value: 1.000000e+00
Index: 1 0 1 Value: 1.000000e+00

******************
**** Component index = 2

Count = 8, Weight = 3, Max accurate weight = 4
Reference point:
-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 1.787000e+01
Index: 0 0 1 Value: 8.700000e+00
Index: 0 1 0 Value: 4.620000e+00
Index: 1 0 0 Value: -5.350000e+00
Index: 0 1 1 Value: 2.200000e+00
Index: 1 0 1 Value: -3.500000e+00
Index: 1 1 0 Value: -2.100000e+00
Index: 1 1 1 Value: -1.000000e+00

************ End LieOperator::printCoeffs ********

====== u.printCoeffs(); ====================

************ Begin LieOperator::printCoeffs ********
Weight: 4

******************
**** Component index = 0

Count = 35, Weight = 4, Max accurate weight = 4
Reference point:
7.500000e-01 1.553000e+01 1.787000e+01
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Index: 0 0 0 Value: -1.200000e+00
Index: 0 0 1 Value: 1.842162e-01
...
Index: 3 0 1 Value: 1.291290e-01
Index: 3 1 0 Value: -6.330736e-02
Index: 4 0 0 Value: 5.789563e-02

******************
**** Component index = 1

Count = 35, Weight = 4, Max accurate weight = 4
Reference point:
7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 3.500000e+00
Index: 0 0 1 Value: -1.936699e-02
...
Index: 3 1 0 Value: 1.901941e-02
Index: 4 0 0 Value: -1.652798e-02

******************
**** Component index = 2

Count = 35, Weight = 4, Max accurate weight = 4
Reference point:
7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 2.100000e+00
Index: 0 0 1 Value: 2.385095e-01
...
Index: 3 1 0 Value: -8.390785e-02
Index: 4 0 0 Value: 7.560193e-02

************ End LieOperator::printCoeffs ********

====== f(u).printCoeffs(); =================

************ Begin LieOperator::printCoeffs ********
Weight: 1

******************
**** Component index = 0
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Count = 2, Weight = 1, Max accurate weight = 4
Reference point:
7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 7.500000e-01
Index: 1 0 0 Value: 1.000000e+00

******************
**** Component index = 1

Count = 2, Weight = 1, Max accurate weight = 4
Reference point:
7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 1.553000e+01
Index: 0 1 0 Value: 1.000000e+00

******************
**** Component index = 2

Count = 2, Weight = 1, Max accurate weight = 4
Reference point:
7.500000e-01 1.553000e+01 1.787000e+01

Index: 0 0 0 Value: 1.787000e+01
Index: 0 0 1 Value: 1.000000e+00

************ End LieOperator::printCoeffs ********

====== u(f).printCoeffs(); =================

************ Begin LieOperator::printCoeffs ********
Weight: 4

******************
**** Component index = 0

Count = 3, Weight = 4, Max accurate weight = 4
Reference point:
-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: -1.200000e+00
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Index: 1 0 0 Value: 1.000000e+00
Index: 0 4 0 Value: -4.786373e-15

******************
**** Component index = 1

Count = 3, Weight = 4, Max accurate weight = 4
Reference point:
-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 3.500000e+00
Index: 0 1 0 Value: 1.000000e+00
Index: 0 4 0 Value: 9.367778e-16

******************
**** Component index = 2

Count = 3, Weight = 4, Max accurate weight = 4
Reference point:
-1.200000e+00 3.500000e+00 2.100000e+00

Index: 0 0 0 Value: 2.100000e+00
Index: 0 0 1 Value: 1.000000e+00
Index: 0 4 0 Value: -3.265400e-15

************ End LieOperator::printCoeffs ********

Comments:

Lines 5-10: The Map variable f is constructed using methods already described in preceding demos. Line 10 invokes
the member function Map::Inverse() to load the inverse of f into u. We decide to retain terms only through de-
gree 4.

Lines 11-14: The coefficients in f and u are printed first. Each is a three-component map, each component being a
Jet. The components are written separately and identified. In comparing the program variable f to the mathematical
function, f , remember to take the reference point into account.

Lines 15-18: Here is the acid test. If indeed f and u model inverse Jets, then it must be that f(u) and u(f) model
the identity functions at their respective reference points, uo and f

�
uo �2� The output shows that this is indeed the case

apart from a term of fourth degree in u(f) which is clearly due to machine error. You should thoroughly review the
output at this point to be sure you understand why the printed coefficients support this claim.

We have not yet included a program using complex valued jets. So as to include at least one such example, what fol-
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lows is source code for an analogous inverse calculation but using complex maps with a reference point of
� � 1 � 2 
 0 � 9i � 3 � 5 
 1 � 7i � 2 � 1 � 0 � 3i

The required extra call to JetC::Setup is a flaw in the MXYZPTLK software and will be corrected. The rest of the pro-
gram is just written in parallel to the previous one, except that coordC and CMap objects are used.

Source:

1 #include "mxyzptlk.rsc"

2 main( ) {
3
4 Jet::Setup ( 3, 4, 3 );
5 JetC::Setup( 3, 4, 3 );

6 coordC x( complex( -1.2, 0.9 ) ),
7 y( complex( 3.5, 1.7 ) ),
8 z( complex( 2.1, -0.3 ) );
9 CMap w, u;

10 w.SetComponent( 0, complex( 3.0, 1.0 ) + x + 3.0*y + x*y - y*z );
11 w.SetComponent( 1, complex( -1.0, 0.2 ) + y - x + z + x*z + y*y );
12 w.SetComponent( 2, complex( 2.0, -0.9 ) + z + 2.0*x + y*z - x*y*z );

13 u = w.Inverse();

14 cout << "\n====== w.printCoeffs(); ====================\n" << endl;
15 w.printCoeffs();
16 cout << "\n====== u.printCoeffs(); ====================\n" << endl;
17 u.printCoeffs();
18 cout << "\n====== w(u).printCoeffs(); =================\n" << endl;
19 w(u).printCoeffs();
20 cout << "\n====== u(w).printCoeffs(); =================\n" << endl;
21 u(w).printCoeffs();
22 }

3.9 Lie Operators

MXYZPTLK contains a Lie operator object which acts on Jets. In the example below, we will model the “equations
of motion,”

ẋ � x
�
2y3 � x3 �2� ẏ �?� y

�
2x3 � y3 �@�

using the Lie operator,

V � x
�
2y3 � x3 � ∂

∂x
� y

�
2x3 � y3 � ∂

∂y
� (12)
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This vector field possesses an invariant: f
�
x � y ��� x2 1 y 
 y2 1 x � The program will test the invariant property by applying

the Lie operator. That is, it will check the condition, V f � 0 �
Source: Lie K Test.cc

1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 4 ) {
4 cout << "\nUsage: " << argv[0]
5 << " deg x y"
6 << endl;
7 exit(0);
8 }

9 Jet::Setup( 2, atoi( argv[1] ), 2 );
10 coord x( atof( argv[2] ) ), y( atof( argv[3] ) );

11 LieOperator V;
12 V.SetComponent( 0, x*( 2.0*pow( y, 3 ) - pow( x, 3 ) ) );
13 V.SetComponent( 1, - y*( 2.0*pow( x, 3 ) - pow( y, 3 ) ) );

14 ( V ˆ ( x*x/y + y*y/x ) ).printCoeffs();
15 }

Output:

hazel 1: Lie_K_Test 5 1.7 3.5

Count = 6, Weight = 5, Max accurate weight = 4
Reference point:
1.700000e+00 3.500000e+00

Comments:

Lines 11-13: After declaring the LieOperator V we set its components in the same way as we would a Map vari-
able. In fact, the two are, more or less, synonomous, in the sense that both contain an array of jets. Of course, they are
very different mathematical objects.

Line 14: The mathematical operation of a Lie operator on a function is implemented via the method LieOperator::operatorˆ(
const Jet& ). The operator symbol “*” was not used for this in order to avoid confusion with statements like,

LieOperator V, W, Y;
Jet f;
...
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W = f*V;
Y = V*f;
˜˜,

which are meant to model the mathematical operations, W � Y � f V � The output shows no terms because the only
non-zero ones are due to machine error appearing at degree 5, which is higher than the “Max accurate weight.”5 That
no terms are printed is equivalent to saying that the Jet is identically zero.

Of course, this test applies only to the reference point. Automatic differentiation is not symbolic differentiation, for
which a zero result would apply everywhere.

3.10 Brackets

The commutator of two Lie operators is itself a Lie operator. This binary operation is accomplished in MXYZPTLK
by sandwiching the operator symbol “ˆ” between two LieOperator objects. We will illustrate its use by calculating
the action of V, defined in Eq.(12), W, defined as

W � y
∂
∂x
� x

∂
∂y

�
and A V � W B on the function f � x2 
 y2 �
Source: lbtest.cc

1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 4 ) {
4 cout << "\nUsage: " << argv[0]
5 << " deg x y"
6 << endl;
7 exit(0);
8 }

9 Jet::Setup( 2, atoi( argv[1] ), 2 );
10 coord x( atof( argv[2] ) ), y( atof( argv[3] ) );
11 Jet f = x*x + y*y; // Equivalent to "Jet f( x*x + y*y );"

12 LieOperator V, W;
13 V.SetComponent( 0, x*( 2.0*pow( y, 3 ) - pow( x, 3 ) ) );
14 V.SetComponent( 1, - y*( 2.0*pow( x, 3 ) - pow( y, 3 ) ) );
15 W.SetComponent( 0, y );

5The fact that these useless terms are even carried around is an anomaly that, it is hoped, will be eliminated in future versions of MXYZPTLK.
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16 W.SetComponent( 1, -x );

17 ( Vˆf ) .printCoeffs();
18 ( Wˆf ) .printCoeffs();
19 ( (VˆW)ˆf ) .printCoeffs();

20 }

Output:

hazel 1: lbtest 3 1 1

Count = 8, Weight = 3, Max accurate weight = 2
Reference point:
1.000000e+00 1.000000e+00

Index: 0 1 Value: 1.400000e+01
Index: 1 0 Value: -1.400000e+01
Index: 0 2 Value: 2.800000e+01
Index: 2 0 Value: -2.800000e+01

Count = 0, Weight = -1, Max accurate weight = 2
Reference point:
1.000000e+00 1.000000e+00

Count = 10, Weight = 3, Max accurate weight = 2
Reference point:
1.000000e+00 1.000000e+00

Index: 0 0 Value: 2.800000e+01
Index: 0 1 Value: 7.000000e+01
Index: 1 0 Value: 7.000000e+01
Index: 0 2 Value: 6.000000e+01
Index: 1 1 Value: 1.600000e+02
Index: 2 0 Value: 6.000000e+01

Comments:

Line 11: This is the declaration of a Jet variable using its copy constructor. BE AWARE: doing this is a little dan-
gerous, because Jets employ an envelope-letter idiom for storing data. It is recommended that Jet variables always
be declared and initialized separately. In this case, it would have been better to have written,

Jet f;
f = x*x + y*y;

Line 19: Most of the program is similar to what has gone before. This line contains the only new operation, taking
the commutator of V and W before acting on f.
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MXYZPTLK also contains a Poisson bracket operation, accomplished by sandwiching the operator symbol “ˆ”
between two Jets. That is, fˆg models � f � g � when f and g are Jet variables just as UˆV models A U � V B when U and
V are LieOperator variables. The next example employs both Lie brackets and Poisson brackets to test the well
known antimorphism, A Va � Vb BC�?� V D a : b E �
We will let

a
�
x � p �;� x2

1x3
2 p1 p4

2 �
b
�
x � p �;� sin

�
x1 p2

2x3
2 ���

The brackets will be evaluated at the arbitrarily selected reference point,
�
x � p �9� �

0 � 32 � 0 � 5 �8� 3 � 1 � 1 � 5 ��� As an added
bonus, we will test the Jacobi identity, using a third function, c � exp

�
p1x1 
 p2x2 ���

Source:

1 #include "mxyzptlk.rsc"

2 main() {
3 double u1( 0.32 ), u2( 0.5 ),
4 v1( -3.1 ), v2( 1.5 );

5 Jet::Setup( 4, 6, 4 );

6 double w, y, z, answer;
7 coord x1( u1 ), x2( u2 ), p1( v1 ), p2( v2 );
8 Jet a, b, c, pb;

9 // -- Calculation of Poisson bracket via Jets
10 a = (x1*x1) * (x2*x2*x2) * p1 * (p2*p2*p2*p2);
11 b = sin( x1 * (p2*p2) * (x2*x2*x2) );
12 pb = aˆb;
13 cout << "Computed by Jet: " << pb.standardPart() << "\n";

14 // -- Hand calculations
15 w = (u1*u1) * (u2*u2*u2) * v1 * (v2*v2*v2*v2);
16 y = u1 * (v2*v2) * (u2*u2*u2) ;
17 z = cos( y );
18 answer = w*y*z*( 6.0/(u2*v2) - 1.0/(u1*v1) - 12.0/(u2*v2) );
19 cout << "Exact answer : " << answer << "\n";

20 cout << "And also : "
21 << ( ( (x1*x1) * (x2*x2*x2) * p1 * (p2*p2*p2*p2) ) ˆ
22 ( sin( x1 * (p2*p2) * (x2*x2*x2) ) )
23 ).standardPart()
24 << "\n\n";
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25 // -- Test of the Jacobi identity
26 c = exp( p1*x1 + p2*x2 );
27 cout << "Jacobi identity" << endl;
28 ( (aˆ(bˆc)) + (bˆ(cˆa)) + (cˆ(aˆb)) ).printCoeffs();

29 // -- Hamiltonian vector fields
30 LieOperator V_a ( a );
31 LieOperator V_b ( b );
32 LieOperator V_pb( pb );

33 cout << "Hamiltonian test" << endl;
34 ( V_pb + ( V_a ˆ V_b ) ).printCoeffs();
35 }

Output:

hazel 2: pbtest
Computed by Jet: 0.125897
Exact answer : 0.125897
And also : 0.125897

Jacobi identity

Count = 84, Weight = 6, Max accurate weight = 4
Reference point:
3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

Hamiltonian test

************ Begin LieOperator::printCoeffs ********
Weight: 6

******************
**** Component index = 0

Count = 28, Weight = 6, Max accurate weight = 4
Reference point:
3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

******************
**** Component index = 1

Count = 49, Weight = 6, Max accurate weight = 4
Reference point:
3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

******************
**** Component index = 2
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Count = 49, Weight = 6, Max accurate weight = 4
Reference point:
3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

******************
**** Component index = 3

Count = 49, Weight = 6, Max accurate weight = 4
Reference point:
3.200000e-01 5.000000e-01 -3.100000e+00 1.500000e+00

************ End LieOperator::printCoeffs ********

Comments:

Lines 9-12, 14-18: The Poisson bracket is computed two ways: (1) using the binary operator ˆ on Jet variables a and
b and (2) for comparison, using its algebraic expansion on variables of type double. Line 12 contains the actual Poisson
bracket, written as a binary operator on two Jet variables, using the same symbol as for LieOperator variables.

Lines 20-24: This third calculation emphasizes that Jet methods and operators work not only on formally declared
Jet variables but also on expressions which evaluate to Jet variables. Of course, that is obtained for free as a feature of
the C++ language.. The hand calculation of Lines 14-18 is repeated but using coords.

Line 28: This tests the Jacobi identity. The expression should evaluate to zero, and the Output indicates that it does.
The extra parentheses make certain that everything gets evaluated in the proper order. Not only is the Poisson bracket
operation non-associative (and non-commutative), its precedence relative to other operations is an issue best left unex-
plored.

Lines 30-32: This form of declaring a LieOperator takes a Jet variable as an argument and builds the Hamilto-
nian vector field associated with it.

Line 34: Finally, the morphism test itself. What is calculated here is,

V D a : b E 
FA Va � Vb BG�
and the Output indicates that the result is indeed zero. (That is, no terms are printed.)

3.11 Exponential maps

The member function LieOperator::expMap performs an exponential map of a LieOperator and applies it to a Jet
to obtain the resulting Jet. In the example below, we will use LieOperator::expMap to “integrate” the equations of
motion,

ẋ � x
�
2y3 � x3 �2� ẏ �?� y

�
2x3 � y3 �@�

using the Lie operator already written in Eq.(12). Recall that this vector field possesses an invariant: x2 1 y 
 y2 1 x � The
program tests the map by the value of this invariant both before and after the time step.

Source: Lie L Test.cc
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1 #include "mxyzptlk.rsc"

2 main( int argc, char** argv ) {

3 if( argc != 3 ) {
4 cout << "\nUsage: " << argv[0]
5 << " deg t"
6 << endl;
7 exit(0);
8 }

9 int deg = atoi( argv[1] );
10 double t = atof( argv[2] );
11 Jet::Setup( 2, deg, 2 );
12 coord x( 0.0 ), y( 0.0 );

13 LieOperator V;
14 V.SetComponent( 0, x*( 2.0*pow( y, 3 ) - pow( x, 3 ) ) );
15 V.SetComponent( 1, - y*( 2.0*pow( x, 3 ) - pow( y, 3 ) ) );

16 Jet f, g;
17 f = V.expMap( t, x );
18 g = V.expMap( t, y );

19 double a, b, z[2];
20 while(1) {
21 cout << "Enter x and y: ";
22 cin >> z[0] >> z[1];
23 a = f( z );
24 b = g( z );
25 cout << "( " << z[0] << ", " << z[1] << " ) maps to ( "
26 << a << ", " << b << " )" << endl;
27 cout << "Before: " << setprecision(5)
28 << z[0]*z[0]/z[1] + z[1]*z[1]/z[0]
29 << " After: " << setprecision(5)
30 << a*a/b + b*b/a << endl;
31 }

32 }

Output:

hazel 1: Lie_L_Test 20 1.
Enter x and y: .3 .5
( 0.3, 0.5 ) maps to ( 0.380158, 0.53075 )
Before: 1.0133 After: 1.0133
Enter x and y: .4 .6
( 0.4, 0.6 ) maps to ( 0.56134, 0.59739 )
Before: 1.1667 After: 1.1632
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Enter x and y: .5 .7
( 0.5, 0.7 ) maps to ( 0.65366, 0.57497 )
Before: 1.3371 After: 1.2489
Enter x and y: .6 .8
( 0.6, 0.8 ) maps to ( 0.75124, 1.4679 )
Before: 1.5167 After: 3.2528
Enter x and y: ˆC

hazel 2: Lie_L_Test 20 -1.
Enter x and y: -.3 -.5
( -0.3, -0.5 ) maps to ( -0.380158, -0.53075 )
Before: -1.0133 After: -1.0133
Enter x and y: -.4 -.6
( -0.4, -0.6 ) maps to ( -0.56134, -0.59739 )
Before: -1.1667 After: -1.1632
Enter x and y: -.5 -.7
( -0.5, -0.7 ) maps to ( -0.65366, -0.57497 )
Before: -1.3371 After: -1.2489
Enter x and y: -.6 -.8
( -0.6, -0.8 ) maps to ( -0.75124, -1.4679 )
Before: -1.5167 After: -3.2528
Enter x and y: ˆC

Comments:

Lines 9-12: The degree of the representative polynomial is established, and the size of the time step is read from the
command line. After Jet::Setup requests a two-dimensional phase space, its coordinates, x and y, are declared.

Lines 13-15: Components of the LieOperator V is constructed so as to model the vector field, V, written above.

Lines 17-18: These lines perform the exponential map operation on the jets x and y. The corresponding mathematical
operation would be written,

f � etVx � g � etVy �
We are applying the exponential map the coordinate functions themselves. Thus, if

�
x1 � y1 �21 mapsto

�
x2 � y2 � under the

flow of Eq.(12), it must be that x2 � f
�
x1 � and y2 � g

�
y1 ���

Lines 19-31: Within an indefinite loop, points are entered and converted with Jets f and g. Values of the invariant
are printed for the “initial” and “final” states. The Output shows two runs of this program, for time steps � 1 � Poly-
nomials are truncated at degree 20. There are two things to note: (a) symmetry is correctly preserved (i.e., t � � t �
x � � x � and y � � y), and (b) the polynomial representation fails rapidly as the size of the argument increases. The
latter property is not helped by taking more polynomial terms. The problem of determining the radius of convergence
of an exponential map is an ongoing topic of research. Note, however, that regardless of whether the series converges
or not, the coefficients in the truncated polynomial are computed exactly.6

6There is a codicil to this: V must map zero to zero and not start with a linear term.
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4 Functions and methods

In this section we describe the functions and methods7 currently available in MXYZPTLK, arranged in the order in
which they probably would be used in most programs.

4.1 Setup function

void Jet::Setup( int n, int w, int s, double* r, double* sc )

Before Jet variables can be used, the application program must provide information on the dimensions of the prob-
lem space and on an initial reference point. This is done with a Setup function which must be invoked before using Jet
variables in arithmetic or analytic operations. The formal arguments, all input, are interpreted as follows.

int n: Dimension of the problem space, the total number of dynamical and control coordinates.

int w: The maximum derivative weight to be carried by Jet variables. If we interpret a Jet variable as a multinomial,
then its degree will be � w �
int s: The number of dynamical coordinates, i.e., the dimension of “phase space.”

double r[n]: An array containing the reference point.

double sc[n]: An array containing numbers characterizing the scale of each coordinate.

Every argument is provided a default value in the header file Jet.hxx. These are: n = 6, w = 1, s = 0, r = 0, and
sc = 0. If s is not declared explicitly, the default option of 0 means that all variables are considered to be control vari-
ables, and neither concatenation nor Poisson brackets will be allowed (see Sections 4.7 and 4.8). If a reference point
is not declared, it will be set to the “origin,” an array of zeroes. Finally, if the scaling array, sc, is not explicitly given,
Jet::Setup will assume that all the values of all variables will have roughly unit magnitude. Jet::Setup will stop the
application program if arguments s and n do not satisfy 0 � s � n �

In principle, Jet::Setup should be invoked before the formal declaration of Jet variables, but this is not always pos-
sible. For example, an application program may contain a fragment like this:

Jet x;
Jet y;

main() {
Jet::Setup();
...

}.

7A “method” is a public member function of either the Jet or LieOperator class.
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Here, x and y are meant to be global variables, so they are initialized when the program begins to run and before the
Jet::Setup function can be invoked. What happens in such a case is this: the C++ Jet constructors only partially initial-
ize these variables and load their addresses into a queue. When Jet::Setup is finally invoked, this queue is traversed,
and the initialization of any variable which had been declared previously is completed.

4.2 Setting the reference point

(a) static void Jet::FixReference ( const double* )
(b) static void Jet::FixReference ( const int* )
(c) static void Jet::FixReference ( const Jet& )
(d) static void Jet::FixReferenceAtStart( const LieOperator& )
(e) static void Jet::FixReferenceAtEnd( const LieOperator& )
(f) void Jet::fixReference ()
(g) void Jet::fixReference ( const double* )
(h) void Jet::fixReference ( const Jet& )
(i) void Jet::fixReferenceAtEnd ( const T& )
(j) void Jet::fixReferenceAtStart( const T& )
(k) void T ::fixReference ( double* ) Note: T is either a Map
(l) void T ::fixReference () or a LieOperator
(m) void T ::fixReference ( Jet& )
(n) void T ::fixReferenceAtEnd ( const T& )
(o) void T ::fixReferenceAtStart( const T& )

EveryJetvariable carries the coefficients of a polynomial that is the simplest representative of an equivalence class
of functions. In addition, it also carries the reference point at which the equivalence class is established. Whenever a
Jet variable is declared, therefore, a reference point must be given. If one is not assigned explicitly, it is done implicitly
by using a default reference point, established initially as the argument of a Jet::Setup fuction. Jet variables declared
either before or after its invocation are assigned this reference point as their own. Alternatively, if the calculation is
initialized by declaring a number of coord variables, then their values automatically become the components of the
default reference point.

However, the default reference point need not remain the same throughout a program. It can be changed by one
of the first four functions listed above. The first sets it value to that of an array provided by the user. Changing this array
later in the application program will not, by itself, change the default reference; another invocation of Jet::FixReference
would be required. Form (b) of this function sets (or resets) the default reference point to that of an already defined
Jet variable. The third function, Jet::FixReferenceAtStart, sets the default reference to the reference point of its
argument; the fourth, Jet::FixReferenceAtEnd, sets it to the standard part of its argument. For example, suppose
the first component of a LieOperator u prolongs the function cos

�
xy 
 π 1 2 �2� while the second component prolongs

sin
�
xy 
 π 1 2 ��� both about the point

�
x � y �9� �
H

π �I� H π ��� Then “Jet::FixReferenceAtStart( u )” would set
the default reference to

�2H
π �I� H π �2� while “Jet::FixReferenceAtEnd( u )” would set it to

�
0 �I� 1 �2� The latter

33



function is essential for doing concatenation correctly (see Sections 4.7 and 3.7).

The ten methods (e)-(n) are public members of the Jet and LieOperator classes. They perform analagously to the
first four, but rather than acting on the default reference point, these members adjust the reference point of the individ-
ual variables. For example, in the fragment

Jet x, y, z;
...
x.fixReference( y );
z.fixReference();

the .fixReference member sets the reference point of x to that of y, while the reference point of z is set to the cur-
rent default reference.

4.3 Initializing a calculation: coordinates

(a) coord::coord ( double x )
(b) void Jet ::setVariable ( int j )
(c) void Jet ::setVariable ( double x, int j )
(d) void T ::SetComponent( int j, const Jet& x ) Note: T is either a Map

or a LieOperator

AD/DA arithmetic must begin by identifying a set of variables as differentiable coordinate functions. The simplest
way of doing this is to declare coord variables, as was done in the demos of Section 3. However, this is not the only
way. Jet variables can also act like coordinates After setting the default reference point with Jet::Setup or JetFixRef-
erence, one simply assigns an “index” to each coordinate variable, as in the fragment below.

...
static double r[] = { 0., 1., -1. };
Jet::Setup( 3, 12, 0, r );

Jet x, y, z, f;

x.setVariable( 0 );
y.setVariable( 1 );
z.setVariable( 2 );

f = exp( x*y + z );

This identifies the phase space coordinate array, u J �
x � y� z ��� The variable fwill contain data on the differentiable func-

tion, f
�
u ��� exy� z � with derivatives evaluated at the point u � �

0 � 1 �I� 1 ��� These data can be accessed through a selection
method (explained in Section 4.6) by using the indices that were assigned by .setVariable.

A second way of initializing a Jet calculation employs the second form of .setVariable to declare a Jet variable as
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a coordinate while simultaneously setting its value. This method is not recommended: it resets the default reference
point one component at a time, so that a invoking .fixReference would be required after the fact.

...
Jet::Setup( 3, 12 );
Jet x, y, z, f;

x.setVariable( 0.0, 0 );
y.setVariable( 1.0, 1 );
z.setVariable( -1.0, 2 );

x.fixReference();
y.fixReference();

f = exp( x*y + z );

The two LieOperator methods enable one to declare a component of a LieOperator variable to be a coordinate —
which is useful in the control sector — or to load Jet variables into specific components — prior to concatenation, for
example. Their use was illustrated in Section 3.

4.4 Operators

Logical and arithmetic binary operators act the way one naturally expects. The replacement operator, =, enables the
replacement of one Jet, or LieOperator, variable by another, while the logical operators == and != test whether two
variables are equivalent. Arithmetic operators +, -, * and /, when sandwiched between two Jet variables, activate
the corresponding arithmetic operations of addition, subtraction, multiplication, and division. In addition, the subtrac-
tion symbol, -, also acts as a unary operator on Jet variables, indicating that they are to be negated. The C++ operators
+=, -=, *=, and /= are available as well.

When placed between two LieOperator variables, the “multiplication” operator, *, initiates concatenation rather
than multiplication. This will be discussed in detail in Section 4.7.

Components of a LieOperator can be accessed as one would expect, using member function Jet LieOperator::operator()(
int ). For example,

Jet x, y, z, ... ;
LieOperator u;
...
x = u(0);
y = u(1);
z = u(2);
...

will load the zero-th component of u into x, the first into y, and so forth.
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In addition to these, the binary operator caret, ˆ, placed between two LieOperators takes their commutator, and
between two Jets, performs a Poisson bracket. We delay its description to Section 4.8.

All binary operators except concatenation, which has its own subtleties, check to be sure that their two operands
have the same reference point. If they do not, then an error message is written on the standard output, and the applica-
tion program is stopped. Of course, the replacement operator, =, automatically sets the reference point of its left-hand
operand to that of the right-hand one.

4.5 Transcendental functions

Most of the C++ transcendental functions available for “double” variables have been written for Jet variables as
well. Specifically, the MXYZPTLK library currently contains the functions sin, cos, tan, asin, acos, atan, exp, sinh,
cosh, tanh, log, log10, pow, sqrt, and w (the complex error function). Except for pow, each takes a Jet argument and,
as one would expect, returns a Jet result. Two signatures are available for pow: Jet pow( const Jet&, int )
and Jet pow( const Jet&, double ).

4.6 Selection methods

(a) double Jet::standardPart ()
(b) double Jet::derivative ( int* m )
(c) double Jet::weightedDerivative( int* m )
(d) void T ::standardPart ( double* x ) Note: T is either a Map
(e) void T ::derivative ( int* m, double* x ) or a LieOperator.
(f) void T ::weightedDerivative( int* m, double* x ) W is either a Jet,
(g) W W ::filter ( int wgtLo, int wgtHi ) a Map, or a LieOperator.
(h) W W ::filter ( char (*f) ( const int*, double ) [] )

A number of methods access parts of Jet variables without changing the variable. As aJetmember function, .stan-
dardPart, returns as its value the image of the reference point, f

�
uo �2� 8 As a LieOperator method, it accepts an array

pointer (that is, the name of an array) as argument and loads the “standard parts” of all its components into this array.
For example:

...
double x[8];
LieOperator y;
...
y.standartPart( x );
if( x[3] == y(3).standartPart() ) cout << "All is OK\n"
...

8The name of this method is a throwback to the days when connections between DA and nonstandard analysis were being stressed.
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The .derivative and .weightedDerivative routines return the value of a specified derivative or component of the
polynomial representative of the jet. Their argument is interpreted as the name of an integer array containing the in-
dices of the desired derivative. For example, if f models a jet containing f : R3 � R, at the point w, then the derivative
∂6 f

�
x �21 ∂x0∂x3

1∂x2
2

�
x� w can be obtained as follows.

...
Jet f;
double d, w[3];
static int m[] = { 1, 3, 2 };
...
Jet::Setup( 3, 10, w );
...
d = f.derivative( m );
...

The .weightedDerivative returns a polynomial coefficient, which is the derivative weighted by factorials of the indices.
These are, according to Eq.(2), the actual coefficients which would appear in the truncated polynomial representation
of f , and they, not the derivatives, are the actual numbers stored in aJet variable.9 Thus, if we replace.derivative
with.weightedDerivative in the example above, then the value returned would be

�
1! 3! 2! � � 1∂6 f

�
x ��1 ∂x0∂x3

1∂x2
2

�
x� w �

As with .standardPart, the LieOperator and Map versions of .derivative and .weightedDerivative load the
values of the derivative for each component of the operator (or map) into the array pointed to by the additional argument,
double* x.

The .filter methods return a variable whose polynomial terms are a subset of those of the object on which they are
invoked. Letting W stand for either a Jet, Map, or LieOperator, form (g) returns a W object with terms whose
degrees are bounded by the arguments, wgtLo and wgtHi, inclusively. Form (h) is more flexible, taking as its argument
an array of decision functions which determine the terms to be filtered into the W object to be returned. As an example,
consider the code fragment,

char c0( const int* index, double /* value */ ) {
return index[0] == 0;

}
char c1( const int* index, double /* value */ ) {

return index[0] == 0 && index[1] < 5;
}
char c2( const int* index, const complex /* value */ ) {

return value > 100.0;
}

typedef char (*FUNCPTR)(const int*, const complex);
static FUNCPTR crit[] = { c0, c1, c2 };

main() {
...

9In fact, the .derivative method first invokes .weightedDerivative and then multiplies by the factorials.

37



Map f, g;
...
g = f.filter( crit );
...
}

The first argument of the criterion functions is interpreted as an array of integers which represent the index of one term
in a polynomial; the second argument is interpreted as the value of the coefficient associated with the first argument.
Given this information, the function decides whether the term passes the filter. With maps, different filters can act on
different components of the map, which is the reason for putting them into an array. In the fragment above, because of
their positions in the array crit, c0 examines the terms in f(0), c1 in f(1), and c2 in f(2). Acting on

f :
x
y
z

<�
300xy2 � 12y3 
 yz

32y8z4 
 72y2

137x2y2 � 75xyz

it would produce the result

g :
x
y
z

<� � 12y3 
 yz
72y2

137x2y2
�

4.7 Evaluation and concatenation

(a) double Jet::operator() ( double* )
(b) Jet Jet::operator() ( Jet* )
(c) Jet Jet::operator() ( T& ) Note: T is either a Map
(d) T T ::operator() ( T& ) or a LieOperator.

A Jet variable stores the coefficients of a truncated polynomial. Form (a) above enables one to evaluate that poly-
nomial at a point in the problem space. The argument is interpreted as an array of doubles containing the point of
evaluation. Jets and Maps keep track of their own reference points, so that the user program need not subtract it ex-
plicitly in specifying the argument. (See the example in Section 3.5.)

Let φ � ψ : RNd � Nc � RNd � Nc be two mappings of the problem space into itself which act like the identity on the
control sector. That is, only the dynamical coordinates change under the action of φ and ψ; the control variables are not
touched. The composite map, h � φ 7 ψ : u <� φ

�
ψ
�
u �
��� is a mapping of the same type. This operation is performed by

form (d) of .operator(). However, notice that although the reference points of h and ψ are identical, say a, the reference
point of φ is ψ

�
a ��� The reference point must be explicitly declared, using the fixReference methods, before performing

concatenation.10 The demo in Section 3.7 provides an example showing how this is done.

10What physicists call “concatenation,” mathematicians call “composition.”
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When the control sector is not empty, all Map and LieOperator operations and methods assume that the first
Nd components refer to the dynamical sector and the final Nc to the control sector, these having been determined by
the Jet::Setup function.

Keep in mind that all manipulations are performed on truncated polynomials. Thus, φ 7 ψ will contain terms only
up to the degree of truncation. All higher degree terms which normally appear when concatenating two polynomials
are ruthlessly eliminated.

Form (c) is similar except that a single jet is concatenated with a map. Thus, if f � g : RN � R and φ : RN � RN � then
the correspondence is:

g � f 7 φ K g = f( Phi ); �
where g and f are Jet variables, and Phi is a Map variable.

Form (b) of concatenation will work only if the problem space is one dimensional, for the operation f 7 g does not
make sense otherwise. Similarly to form (a), the argument is interpreted as an array of Jet variables.

4.8 Differentiation and Poisson brackets

(a) Jet Jet ::D ( int* m )
(b) Jet LieOperator ::operatorˆ ( Jet& )
(c) LieOperator operatorˆ ( LieOperator&, LieOperator& )
(d) Jet operatorˆ ( Jet& x, Jet& y )

Derivatives of jets are themselves jets, and each function listed above performs an action of differentiation. For
example, if u � v : R5 � R � and we want to implement the functional correspondence, v J ∂7u 1 ∂x2

0∂x1∂x4
3, using Jet

variables, this could be accomplished as follows.
...
Jet::Setup( 5, 10 );
Jet u, v;
static int m[] { 2, 1, 0, 4, 0 };
...
v = u.D( m );

The Jet variable u itself would be unchanged by this method.

Taking derivatives lower the degree of a mathematical jet and, correspondingly, lowers the maximum accurate
weight of a Jet variable. Thus, if u stores derivatives of the real valued function u through weight w, and we define
v to be an mth-order derivative of u, then v can store the derivatives of v accurately only through weight w � m � all
derivatives of higher weight being unknown. In the small fragment shown above, only derivatives through order 3 will
be correctly stored in v, because the call Jet::Setup requested only derivaties through order maximum order 10 be
stored in any Jet variable, particularly, in u. A private datum of each Jet variable keeps track of the maximum weight
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of accurately stored derivatives, which may be less than the maximum weight declared by the Jet::Setup function.
These data are used by and propagated through arithmetic operations, so that errors will not arise. In principle, an ap-
plications program could request a differentiation or invoke a selection method which cannot be carried out accurately
because of differentiations executed previously. If this happens, then the Jet class will refuse to cooperate and will write
an error message to the standard output.

The badly overloaded operator symbol ˆ indicates the action of a LieOperator on a Jet and two different
kinds of brackets. Form (b) implements the former.

g � V f K g = Vˆf

Form (c) implements the commutator of two Lie operators, which is itself a Lie operator.

U �LA V � W BMK U = VˆW

Finally, if the dynamical sector has even dimension, say Nd � 2n � it can be (and usually is) interpreted as a phase space
whose first n components are “positions” and whose second are “momenta.” The Poisson bracket is then well defined,
and Jet implements this operation via form (d).

h �M� f � g � K h = fˆg

Because all these operation requires taking derivatives, the maximum accurate weight of the resultant is generally

smaller than that of its operands. This reduction does not occur, however, when the objects map their reference points
to the origin, for example, if the image of the reference point is zero under both f and g. Again, MXYZPTLK stores
that information automatically so that the user program need not keep track of it explicitly.
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