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The FPCL module LinearAlgebra contains two classes that emulate the mathematical concept of a
matrix: MatrixD (equivalently, Matrix) and MatrixC, for matrices possessing real and complex ele-
ments respectively. We will use either “Matrix”, “MatrixD”, or “MatrixC” in sentences referring to
the specific classes and simply “matrix” in sentences which can refer to either class or to the underlying ab-
stract mathematical object. Correspondingly, the word “scalar” will mean either Float8 or Complex8
depending on the context.1

This document is written in four sections. The first deals with the fundamental tasks of declaring and
initializing matrices. Available matrix functions are described in the second. In addition to basic arith-
metic, these include methods for inversion and factorization (esp., eigenanalysis). The third section dis-
cusses the concept of “data models,” which was the key consideration dictating the design of this pack-
age.2 Finally, stream operators, which provide a mechanism for light persistence, are described in the last
section.

Note: Scattered throughout this document are paragraphs in italics beginning with the word “Note.” This
is an example of one. They convey information about deficiencies in Version 1.0 of the FPCL LinearAl-
gebra module, either features which have not yet been implemented or ones which have but perhaps not
as well as they could be. It is intended that these deficiencies be corrected in later versions, at which time
the corresponding paragraphs should be removed.

1 Declaration, initialization, and assignment

Matrices are declared (instantiated) with two integer arguments indicating row and column dimensions.
Thus, “Matrix x( 12, 7 ); ” would be used to instantiatex as a matrix with 12 rows and 7 columns.
If the matrix is square, then an alternative constructor takes one integer argument, specifying the dimen-
sion, and aFloat8 argument, indicating the initial value along the diagonal: for example, “Matrix x( 3, 1.0 ); ”
would result in a 3 3 unit matrix, while either “Matrix x( 3, 3 ); ” or “Matrix x( 3, 0.0 ); ”
would instantiate a 3 3 zero matrix. By default, without any arguments – as in “Matrix a; ” – a 2 2
zero matrix is produced. Finally, an optional Float8[] argument can be used to initialize a Matrix from
an array of values. These various possibilities are listed below.

1“Float8” is a fixed type specified in the FPCL file fixedtypes.h. It denotes a variable of eight bytes emulating a real number.
Almost always, this is the same as “double.” “Complex8” is not found in fixedtypes.h, but it should be.

2The ability to add data models to the package was introduced at the request of potential users, strongly expressed during an
FPCL workshop held at Fermilab.
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Float8 w[16];
...
Matrix a; // By default, a 2x1 matrix of zeroes.
Matrix b( 3, 5 ); // A 3x5 matrix of zeroes.
Matrix c( 7, 3.1416 ); // A 7x7 matrix with 3.1416 on the diagonal.
Matrix d( 7 ); // A 7x1 column matrix.
Matrix e( 2, 8, w ); // The sixteen components of w are loaded

// into a 2x8 matrix.
Matrix f( 4, w ); // The sixteen components of w are loaded

// into a 4x4 matrix.

Similar constructions are valid for MatrixC objects.

Complex8 w[16];
...
MatrixC a;
MatrixC b( 3, 5 );
MatrixC c( 7, w[0] );
MatrixC d( 7 );
MatrixC e( 2, 8, w );
MatrixC f( 4, w );

After a Matrix has been instantiated, numbers can be assigned directly to its elements.

Matrix a(3,2);
a(0,0) = 0.0; a(0,1) = 0.1;
a(1,0) = 1.0; a(1,1) = 1.1;
a(2,0) = 2.0; a(2,1) = 2.1;

Notice that the indexing begins with zero, not one; life is too short to fight against the natural indexing
scheme of both C and C++, so learn to live with it. The same operator is used to access matrix elements
for use.

Matrix a(3,2);
Float8 x = a(1,0);

It is also possible to initialize a matrix directly from an array after its instantiation by using the .loadFrom
member function.

Matrix a(3,2);
Float8 numbers [] = { 0.0, 0.1,

1.0, 1.1,
2.0, 2.1 };

a.loadFrom( numbers );

As noted earlier, by specifying a Float8[] argument when declaring a MatrixD, the array specified
is used to initialize it.3 .loadFrom works in a similar manner except that the Matrix has already been
initialized. If either method is used, you take the responsibility of assuring that the array in the argument
has the correct size. No error condition is thrown if it does not, but the application obviously may produce
incorrect results.

Finally, values can be loaded into a Matrix from a stream. We will postpone the discussion of this
option until Section 4.

3A similar statement holds for MatrixC except that a Complex8[] argument is needed.
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2 Functionality

To physicists and mathematicians – indeed, to anyone except a computer scientist – a matrix is not merely a
container for storing data. It must possess algebraic and analytic functionality. In this section we describe
what is available in FPCL/LinearAlgebra Version 1.0.

2.1 Arithmetic

Physicists are comfortably familiar with matrices – regardless of whether the comfort is justified – so the
interface for matrix arithmetic needs little introduction. The operators +, *, and - behave as one would
naively expect when sandwiched between two MatrixD or MatrixC objects. Simple arithmetic state-
ments like

Matrix a(8,5), b(5,7), c(8,7), x(8,7);
...
x = ( a*b + c );

need no further explanation. In addition, the operators+=, -=, and *= are available and work as expected.
However, remember that matrix multiplication is non-commutative, so that “x *= y;” is equivalent to
“x = x*y;” but not to “x = y*x;”. Finally, mixed mode arithmetic with scalar variables is permitted
when it makes sense.

Matrix a( 4, 4 ), b( 4, 4 );
Matrix x( 3, 4 ), y( 3, 4 );
b = 1.0 + 3.2*a; // Okay
y = 1.0 + 3.2*x; // Wrong. A scalar cannot be added

// to a non-square matrix.

2.2 Math functions

Any math function that can be applied to a double or complex variable can also be applied to a square
matrix. The one exception is abs (or fabs), for which there is no natural extension to matrices. Code
fragments like

Matrix x( 9, 9 );
...
x = sin(x) + cos(sqrt(x));

are legitimate, but the application program must include the header file MtrDMath.h before using these
functions.

Note: Math functions should be available for both the MatrixD and MatrixC classes. At the time of writ-
ing, they are only available for MatrixD. They also work only with matrices that can be diagonalized,
although this too should not be a restriction.

2.3 Inversion

Purposely, there is no binary operator specifying division of one matrix by another. The expression “A/B”
could be interpreted either as B 1 A or as A B 1.4 Because there is no natural way to resolve the am-

4When the FPCLTF was polled, they split down the middle as to which should be the “correct” meaning.
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biguity, we are avoiding future headaches by accomplishing matrix inversions with member functions
.inverse, .solve, and .pseudoInverse.

The .inverse method takes zero or one argument and returns the inverse of the square matrix to which
it is applied.

MatrixC y( 3, 5 ), m( 3, 3 ), x( 3, 5 );
Complex8 det;
...
y = m * x;
x = m.inverse() * y;
m = ( 1.0 + m ).inverse( &det );

If what is desired is the actual inverse of a matrix, as in the last line above, then this is the method that
should be used. If the address of a scalar is supplied as the argument, then the determinant of the matrix
is passed back through it. (Determinants can also be evaluated using the .determinant member function,
as described later.) On the other hand, if one needs to solve a system of linear equations, as in the next to
last line, it would be better to use .solve.

Matrix y( 3, 5 ), m( 3, 3 ), x( 3, 5 );
...
y = m * x;
x = m.solve( y );

This possesses the advantage of solving the linear system in place, rather than first computing the inverse
and then performing a matrix multiplication. The solution is returned as a matrix with the same dimensions
as the argument, which is not altered.

If a matrix has more rows than columns, the .inverse routine will fail. However, the Moore-Penrose
pseudoinverse of such matrices can be calculated using member function .pseudoInverse.5

MatrixD y( 3, 5 ), m( 12, 3 ), x( 3, 5 ), b( 12, 5 );
...
y = m * x + b;
x = m.pseudoInverse() * y;
x = m.solve( y );

Apart from machine error, both lines produce the same output. The member function .solve works for
non-square matrices and results in the same solution as produced by pseudoinversion.

Note: Only MatrixD::inverse(), MatrixC::inverse(), MatrixD::pseudoInverse(), and
MatrixC::pseudoInverse() are available for use. The others involve nothing more than simple modifica-
tions of these, but they have yet to be written.

2.4 Factorizations

Matrices possess several standard factored forms. A few of them are available in Version 1.0 of the FPCL
LinearAlgebra package: eigenanalysis, singular value decomposition, and polar factorization. Others may
be added to later versions, if desired. In every case, a MatrixD member function returns a struct that
contains the factors as its member data.

5Formally, the Moore-Penrose pseudoinverse of an m n matrix A is an n m matrix A† such that A† A 1 and A A† is idem-
potent (i.e., a projector). Intuitively, it is the “least squares fit” matrix.
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2.4.1 Eigenanalysis

Given a square matrix, X, the objective of eigenanalysis is to find an invertible matrix E and a diagonal
matrix such that X E E or equivalently, X E E 1 The columns of E are the eigenvectors
of X and the diagonal elements of are its eigenvalues. A MatrixD member function .eigen produces
a “MatrixEigenData” struct containing the two matrices E and as data members _vectors and
_values respectively. One way of obtaining these matrices from the struct is as follows.

Matrix x( 23, 23 );
MatrixEigenData w( x.eigen() );
MatrixC e( w._vectors );
MatrixC l( w._values );

In general, both the matrix of eigenvectors and the diagonal matrix of eigenvalues are complex.6

Note: For now, only MatrixD objects possess the .eigen member function. It should be extended to Ma-
trixC objects as well.

2.4.2 Singular Value Decomposition

The singular value decomposition of a real matrix is a factorization into three matrices,

X U D VT

where U and V are orthogonal, real matrices, and D is a positive-definite diagonal matrix. Dimensionally,
if X is an r c MatrixD, then U will be r c and both D and V will be c c. Further, it is assumed that
r c; that is, the matrix represents an overconstrained set of linear equations. Singular value decomposi-
tion is performed by the MatrixD member function, .singularValueDecomposition.7 Typical usage is
illustrated below.

MatrixD x( 11, 5 );
...
MatrixSVDData w( x.SingularValueDecomposition() );
cout << x - ( w.u * w.d * w.v.transpose() ); // To machine accuracy,

// will write a Matrix of zeroes.

2.4.3 Polar factorization

Polar factorization of a real, square matrix, X, expresses it in the form, X P where P is a positive-
definite matrix and is orthogonal. It can be obtained by using the MatrixD member function .polar,
as illustrated in the next fragment.

Matrix x( 4, 4 ), r( 4, 4 ), t( 4, 4 );
...
MatrixPolarData w( x.polar() );
r = w.rho;
t = w.theta;

6Contrary to popular opinion, not all matrices are Hermitian. In fact, not all matrices can be diagonalized. If this is unfamiliar,
material on Jordan’s canonical form can be found in any good linear algebra textbook.

7A shorter, more natural name would have been .SVD, which is its actual acronym in the mathematics texts. However, the FP-
CLTF felt that this would be mistaken for “silicon vertex detector.”
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2.5 Miscellaneous utilities

MatrixD and MatrixC possess several convenient “utility” functions. These are listed below with a
minimum of comment.

Method Return type Return value
.rows() int row dimension of a matrix
.columns() int column dimension of a matrix
.transpose() Matrix or MatrixC transpose of a matrix
.determinant() Float8 determinant of a square matrix
.trace() Float8 or Complex trace of a square matrix

3 Data models

One of the most important requirements communicated to the FPCL Task Force was the need for special
data handling of specific kinds of matrices — diagonal, tri-diagonal, anti-symmetric, and so forth. The
data handling procedures should take advantage of the matrix’s properties in order to decrease storage
and increase performance. Especially emphasized by potential users was the desirability of treating small
square matrices in an efficient manner that bypassed the generic matrix algorithms. In response to this
request, a number of initial “data models” are available, and we expect that more will be added in the
future.

3.1 Specifying a data model

A data model is activated via a corresponding member function of the form .declareXXX. To illustrate,
consider that a 3 3 unit matrix can be instantiated simply by declaring it, as in the statement “Matrix a( 3, 1.0 );”.
By default this assumes a generic data model which, accordingly, will use the generic matrix algorithms.
To specify the 3 3 data model, with all of its presumed advantages, we proceed as follows.

Matrix a( 3, 1.0 );
a.declareM33();

On the other hand, if a programmer’s intention is that the Matrix remain diagonal throughout an applica-
tion, then it may be better to specify a diagonal data model.

Matrix a( 3, 1.0 );
a.declareDiagonal();

After invoking .declareDiagonal, only three numbers will be stored and manipulated in operations with
the matrix a . This all happens automatically, behind the scenes, in a manner completely transparent to
the application programmer. At the application level, syntax for manipulating the matrix is unchanged.
On the other hand, statements which violate its special nature will produce errors.

Matrix a( 3, 3 );
a.declareDiagonal();

a(0,0) = 0.0; // These lines are OK
a(1,1) = 1.1;
a(2,2) = 2.2;
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cout << a(0,0) << a(0,1); // a(0,1) will return zero

a(0,1) = 0.1; // This will produce an error message

Data models cannot be combined or activated simultaneously; there is, for example, no such thing as
a “3 3 diagonal” data model. If an urgent need for one ever arises, it could be implemented and added
to the LinearAlgebra library; in the absence of such demands, no such combinations exist. The result of
the lines

Matrix a( 3, 3 );
a.declareM33();
a.declareDiagonal(); // This line nullifies the previous one.

is a diagonal model only.
Appropriate use of a .declareXXX function is predicated on the predefined dimensions of the matrix.

As examples, consider the following correct and incorrect statements.

Matrix a( 5, 5 ); a.declareSymmetric(); // OK
Matrix b( 3, 7 ); b.declareSymmetric(); // Wrong!
Matrix c( 4, 4 ); c.declareM44(); // OK
Matrix d( 3, 3 ); d.declareM44(); // Wrong!
Matrix e( 9, 9 ); e.declareDiagonal(); // OK
Matrix f( 3, 9 ); f.declareDiagonal(); // Wrong!

Non-square matrices cannot be symmetric or diagonal, and the declared dimensions of a small square
matrix should match the data model invoked.

We note in passing that a matrix that is declared and assigned in the same statement will automati-
cally assume the dimensions and data model of its initializer. This must happen because of the way such
statements work, viz., by invoking the copy constructor.

MatrixC a( 137, 137 );
a.declareHermitian();
MatrixC b = a;
MatrixC c(a);

Except for the names of the variables, the third and fourth lines are completely equivalent, and each will
instantiate a matrix possessing the Hermitian data model. However, in the example below,

MatrixC a( 137, 137 );
a.declareHermitian();
MatrixC b( 137, 137 );
b = a;

the matrix b remains generic; its data model will not automatically become “Hermitian.”

3.2 Behavior of .loadFromArray

The behavior of the member function .loadFromArray is affected when a non-generic data model is em-
ployed. Consider this next fragment.
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Float8 aData [] = { 1., 2., 3.,
4., 5.,

6. };
Matrix a(3,3); a.declareSymmetric(); a.loadFromArray( aData );

Float8 bData [] = { 2., 3.,
5.

};
Matrix b(3,3); b.declareAntisymmetric(); b.loadFromArray( bData );

Float8 cData [] = { 1.,
4.,

6. };
Matrix c(3,3); c.declareDiagonal(); c.loadFromArray( cData );

After a data model is declared, only the significant matrix elements should be provided by the array. The
components of aData represent the upper right elements of the symmetric matrix a, those of bData,
the upper right elements of the anti-symmetric matrix b excluding the diagonal, and those of cData, the
non-zero elements of the diagonal matrix c . Even though the extra data are neither specified nor stored,
the value returned by b( 0, 1 ) would be 2, that returned by b( 1, 0 ) would be 2, c( 1, 0
) would be 0, and so forth.

The reason for writing .loadFromArray in this way is the efficiency of using a simple memcpy oper-
ation to transfer numbers from the array to the matrix data storage area. It also easily prevents errors from
being made, such as an anti-symmetric matrix with data that are not appropriate. If the syntax seems too
confusing, it might be helpful to fill in the missing matrix elements with imbedded comments.

Float8 bData [] = { \* 0. *\ 2., 3.,
\* -2. 0. *\ 5.
\* -3. -5. 0. *\

};
Matrix b(3,3); b.declareAntisymmetric(); b.loadFromArray( bData );

Then again, it might not.

Note: The examples given above are a bit of a fraud because no Hermitian, symmetric, or anti-symmetric
data models exist yet in the LinearAlgebra module. At the time of writing, the only data models that ac-
tually have been implemented are 2 2 (.declareM22) through 6 6 (.declareM66), diagonal (.declare-
Diagonal), and generic (by default, or use .makeGeneric as illustrated below).

3.3 Changing the data model

The data model associated with a matrix can be changed any number of times in the course of a program.
This is done in one of two ways: either by the .declareXXX member functions as above, or by invoking the
member functions .makeXXX instead. The difference between the two is that .makeXXX will perform
regardless of the data stored in the matrix while .declareXXX requires that they possess the appropriate
properties. Thus, for example,

Matrix x( 2, 1.0 );
x.declareDiagonal();

would work properly, while
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Matrix x( 2, 1.0 );
x( 0, 1 ) = 1.0;
x.declareDiagonal(); // Wrong!

would not work at all. On the other hand,

Matrix x( 2, 1.0 );
x( 0, 1 ) = 1.0;
x.makeDiagonal(); // Okay

would ignore the off-diagonal element and result in a diagonal matrix. However, .makeXXX cannot be
used to change the dimensions of a matrix.

Matrix x( 2, 5 );
x.makeM33(); // Wrong!

These functions can be used in tandem. For example, if the generic matrix x is mathematically sup-
posed to be symmetric at some point in a calculation but is not numerically so because of machine roundoff
error, exact symmetry can be enforced with the statement “x .makeSymmetric() .makeGeneric();”.
The first operation will enforce symmetry (by averaging off-diagonal elements) while the second reverts
x to its generic data model before proceeding with the program. In this way, matrices can be “cleaned
up,” a somewhat dangerous operation that probably should be done rarely.

If an assignment statement is written between matrices possessing different data models, the data are
transferred, if it makes sense to do so, but each matrix retains its own data model.

Matrix a( 11, 11 ), b( 11, 11 );
Matrix c( 8, 7 );
b .declareAntisymmetric();
...
a = b; // OK, but a remains a generic matrix.
c = b; // Wrong! Dimensions are incorrect.
b = a - a.transpose();

// Will work only if the right hand side
// is antisymmetric, to within some tolerance.

The classes could have been designed so that the statement “c = b;” would be acceptable, but that pos-
sibility was voted down by the FPCL Task Force. Instead, this restriction can be bypassed, if necessary,
by assigning with the .setEqualTo member function.

Matrix a( 3, 8 ), b( 11, 11 );
b .declareAntisymmetric();
...
a.setEqualTo( 8.0*b );

The function setEqualTo causes a to change its data model to that of b or, more precisely, to that of its
argument. This is useful when writing a function with matrix arguments, especially if one wants to absorb
the data model of an argument and, possibly, even return the answer with the same model.

Matrix foo( const Matrix& x )
{

Matrix ret;
ret.setEqualTo(x);
...
return ret;

}
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3.4 RTTI

Run time type information (RTTI) provides a means for learning the type an object given only its address
(i.e., a void* pointer). The RTTI global function typeid cannot be used directly to discover the data
model associated with a Matrix; for example, a statement like

Matrix x;
...
cout << typeid(x).name();

would produce either “MatrixD” (or “MatrixC”) as its value, regardless of the underlying data model.
It should never really be necessary to know this information, but for completeness, the public member
function .typeID provides a capability for acquiring the data model associated with a Matrix. It returns
the same Type info object as typeid but now referring to the data model. For example,

Matrix x;
...
cout << x.typeID().name();

would result in “MLDGeneric” being written to the output stream.

3.5 New data models

The LinearAlgebra module was designed to possess a natural upgrade path for adding more data models
in later versions, not only the anticipated ones, like Symmetric and Hermitian, but also unanticipated ones,
such as Markov or Hadamard. An effort has been made to isolate the necessary changes so that the process
of adding new data models would scale no worse than linearly with the number of already existing models.
It is also likely that the module’s original author will not be the one to write all the additional data models.
In order to make it easier for anyone to add them as needed, instructions can be found in the companion
Design Notes.

Note: Of course, the Design Notes document does not yet exist.

4 Streaming: a light persistence mechanism

The LinearAlgebra module includes stream operators, providing a “light” persistence mechanism. A small
demo program,

#include <stdlib.h>
#include "LinearAlgebra\Matrix.h"

void main()
{

Matrix x( 3, 4 );
for( int i = 0; i < 3; i++ ) {
for( int j = 0; j < 4; j++ ) {

x( i, j ) = (j+1)*exp(10*i);
}

}
cout << x;

}
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would produce the output,

begin MLDGeneric 3 X 4 - formatted
1.000e+00 2.000e+00 3.000e+00 4.000e+00
2.203e+04 4.405e+04 6.608e+04 8.811e+04
4.852e+08 9.703e+08 1.455e+09 1.941e+09

end

If the output is written to a file, the data can be read back using the stream-in operator. For example, the
program,

#include <stdlib.h>
#include <fstream.h>
#include "LinearAlgebra\Matrix.h"

void main()
{

Matrix x( 3, 4 );
for( int i = 0; i < 3; i++ ) {
for( int j = 0; j < 4; j++ ) {

x( i, j ) = (j+1)*exp(10*i);
}

}
ofstream os( "test.dat" );
os << x;
os.close();
ifstream is( "test.dat" );
Matrix y;
cout << y;
is >> y;
cout << y;

}

would result in the console output,

begin MLDGeneric 2 X 2 - formatted
0.000e+00 0.000e+00
0.000e+00 0.000e+00

end
begin MLDGeneric 3 X 4 - formatted
1.000e+00 2.000e+00 3.000e+00 4.000e+00
2.203e+04 4.405e+04 6.608e+04 8.811e+04
4.852e+08 9.703e+08 1.455e+09 1.941e+09

end

Streaming provides the one and only manner in which an already declared Matrix can change its dimen-
sionality. This is even more apparent in the following example,

#include <stdlib.h>
#include <fstream.h>
#include "LinearAlgebra\Matrix.h"
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void main()
{

Matrix x( 3, 4 ), y( 2, 2 ); y.declareM22();
Matrix* z[2]; z[0] = &x; z[1] = &y;

int i, j, k;
for( k = 0; k < 2; k++ ) {
for( i = 0; i < z[k]->rows(); i++ ) {

for( j = 0; j < z[k]->columns(); j++ ) {
(*z[k])( i, j ) = (j+1)*exp(10*i);

}
}

}

ofstream os( "test.dat" );
os << x << y;
os.close();

ifstream is( "test.dat" );
Matrix w;
for( i = 0; i < 2; i++ ) {
is >> w;
cout << w;

}
}

with console output,

begin MLDGeneric 3 X 4 - formatted
1.000e+00 2.000e+00 3.000e+00 4.000e+00
2.203e+04 4.405e+04 6.608e+04 8.811e+04
4.852e+08 9.703e+08 1.455e+09 1.941e+09

end
begin MLD22 2 X 2 - formatted
1.000e+00 2.000e+00
2.203e+04 4.405e+04

end

Both data model and dimensionality are preserved by the stream operators. While a little dangerous, this
flexibility allows a user to read a Matrix from a file without requiring that he8 know these details ahead
of time.

Note: It may be decided by higher FPCLTF authority that this capability is indeed too dangerous and
should be eliminated. Personally, I hope that it is allowed to stand.

The examples written so far do not illustrate true persistence, since numbers are written to the ASCII
file with only four significant digits. Streaming formats can be changed in a number of ways. True per-
sistence is provided by specifying a binary format as follows.

8Yes, yes: or she.
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#include <stdlib.h>
#include <fstream.h>
#include "LinearAlgebra\Matrix.h"

void main()
{

Matrix x( 2, 3 ), y;
int i, j;
for( i = 0; i < 2; i++ ) {
for( j = 0; j < 3; j++ ) {

x( i, j ) = (j+1)*exp(10*i);
}

}

cout << "x:\n" << x;

{ ofstream os( "test.dat" );
os << x;
os.close();
ifstream is( "test.dat" );
is >> y;
cout << "Difference: ASCII:\n" << x - y;

}

OutputFormat myformat;
myformat.dumpbase = BIN;
x.setOutputFormat( &myformat );

{ ofstream os( "test.dat", ios::binary | ios::out );
os << x;
os.close();
ifstream is( "test.dat" );
is >> y;
cout << "Difference: Binary:\n" << x - y;

}
}

After declaring an OutputFormat object, myformat, and setting its .dumpbase field to BIN, it is
assigned to the Matrix x using the member function .setOutputFormat. The argument is myformat’s
address; in fact, myformat is not copied, which allows matrices to share the same OutputFormat.
Notice that the output file stream ifself must be opened with the flags “ios::binary | ios::out.”
Omitting this may or may not produce erroneous results, depending on the operating system and the size
of the matrix. This demo would produce the console output:

x:
begin MLDGeneric 2 X 3 - formatted
1.000e+00 2.000e+00 3.000e+00
2.203e+04 4.405e+04 6.608e+04

end
Difference: ASCII:
begin MLDGeneric 2 X 3 - formatted

13



0.000e+00 0.000e+00 0.000e+00
-3.534e+00 2.932e+00 -6.026e-01
end
Difference: Binary:
begin MLDGeneric 2 X 3 - formatted
0.000e+00 0.000e+00 0.000e+00
0.000e+00 0.000e+00 0.000e+00

end

As expected, the binary stream provides an exact replica of the original, but the ASCII one does not. The
supported possibilities for the .dumpbase field are: BIN for a binary dump of bits and DEC, OCT, and
HEX, for ASCII files with data written in decimal, octal, and hexadecimal format respectively. In the latter
three cases, OutputFormat objects also possess .width and .precision fields which allow the user to
specify those as well.

The Matrix classes possess a defaultOutputFormatwhich governs the output of all matrices whose
.setOutputFormat member functions have not been invoked. These defaults are global variables named
MLD::defaultOutputFormat, for classMatrixD, andMLC::defaultOutputFormat, for class
MatrixC. By changing their fields at any point in a program, the user can modify them to suit his needs,
thereby affecting the (default) stream formatting for all matrices simultaneously. Even after the stream
format of a matrix has been changed, it can be easily returned to the default value.

MatrixC z;
...
z.setOutputFormat( &MLC::defaultOutputFormat );
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