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o What ground motion we are
talking about ?

about Earth orbita
motion...



drift...
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And not so much about
earthquakes...

World Seismicity: 1975 - 1995
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What ground motion we do
care about ?

l NLC

e The tiny motion which always exist and that we
usually do not feel and do not care ...

Human threshold of
perception of whole-body
vibration [1-8Hz]

L

MACHINERY WVIBRATION
[ =10 Hzl
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\ Why do we care about
e Ground Motion
e Linear Collider
— Collide small beams (nanometers); very small beam emittance

e Ground Motion and vibrations continuously mjsglign
components of a collider and can result Iin

>
- offset at IP <« T

- emittance growth ._’ ‘_.
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Ground motion may produce
offset of the beams at IP...

R

The focusing
Ienses need Accelerator
to be on Physicist
stable ground
or need to be
stabilized

Pulsed power
source

R. Assmann
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l NLC

Ground Motion basics
example of measured spectra

Fundamental -
decrease as 1/w

Quiet & noisy
sites/conditions

Cultural noise &
geology very
Important

Motion i1s small at
high frequencies...

How small?

o UNK tunnel

¢ LEP tunnel

» Hiidenvesi cave

o HERA tunnel

a SLAC tunnel
= SLAC 2am model

[ = — HERA model

LEP model

—_— 1w

.\Lﬁ
Cultural noise -
& geology

10°
Frequency (Hz)
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\ Natural ground motion is small
N..c at high frequencies
At F1 Hz the motion

Is <1nm 1 micron . ‘
WW/\ 0.0%0.1 Hz
! MWM 0.1-0.3 Hz

(1.e. much less than 8
beam size in LC) §~
1 nm E Ve 0,34 Hz
Is it OK? ) k M\H f BUREXE
5 "I ﬁ 'i m !t:":‘!\ 310 Hz
What about low l""u“l“’w 'l‘“hJ'v 3045 Hz

frequency motion?

Movembar

It is much larger...
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\ Ground motion In time and space
.NLC

e To find out whether large slow ground
motion relevant or not..

e One need to compare
- Frequency of motion with repetition rate of
collider
- Spatial wavelength of motion with focusing
wavelength of collider

Z
? \ 7 / [P \ — < ?
)

Snapshot of a linac | ___
Wavelength of misalignment
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\ Two effects of ground motion
e In_Linear Colliders

f
requency

‘slow motion’

“fast motion’

Fe ~ Frep /20

Beam offset due to slow
motion can be
compensated by
feedback

May result only in beam
emittance growth

<« @

Beam offset cannot be
corrected by a pulse-to-
pulse feedback operating
at the F,,

causes beam offsets at
the IP

>
<
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Focusin

of a FODO linac

g wavelength

. NLC
FODO linac
. ' 5 . . . .
FODO ||naC_W|th Quadrupoles Beam
beam entering
with an offset
!:
beam S
8
E Di‘ﬂlﬂl. el et el ol e O ol Gl e O b Ll bbb i{\
2
=
3 quads
Betatron «—
Wavelength IS 1o Focusing wavelength
be compared (“betatron wavelength”)
with wavelength S0 10 20 30 40 50

of misalignment

Longitudinal position
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VJ\I\/Iovie of a Misaligned FODO linac (&%
0 NLC "
Note: 5

FODO linac

'Quadrl.ipules | Beam

Beam follows
the linac If
misalignment is
more smooth
than betatron
wavelength

Vertical position

Resonance if
wavelength of
misalignment ~ 5 . . . .

0 10 20 30 40 50

focusing Longitudinal position
wavelength
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Slow motion is well correlated,
I.e. Its wavelength is long...

»

e Effect of slow
motion suppressed
because

— It i1s slow and can
be corrected out

Absolute motion

Relative motion
over dL=100 m

(micron RMS)

— Its wavelength is
longer than
betatron wavelength

)
O
3
£
a
£
<
g,
2
©
D
(o)
0]
o
£

‘ BenefiCiaI tO have 1 1 IIIIIII 1 1 IIIIII| 1 1 IIIIII| 1 1 111
good correlation _ o e
requency (Hz
(longer wavelength)
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. NLC

P-wave, (primary wave, dilatational wave, compression wave)
Longitudinal wave. Can travel trough liquid part of earth.

: : A+2G
Velocity of propagation Vv, = -

S-wave, (secondary wave, distortional wave, shear wave)
Transverse wave. Can not travel trough liquid part of earth

. . fG
Velocity of propagation vy =_|—  typically Vg = Ve
1Y 2

E 1= VE
2(1+v) S (1+v)(1-2v)

Here p- density, G and A - Lame constants: G =
E-Young’s modulus, v - Poisson ratio
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. NLC

In addition to p-waves and s-waves,
the half-space can also withstand the waves
that propagate and localized near the surface

Amplitude at Depth z
Amplitude at Surface
- -04 . () 0.2 04 0.6 08 1.0 12
08 T T T '0|2 T T T T T 1 T k! 1 T 0

R [* Amplitude of Rayleigh
) wes 1" wave decrease
-0z oes wa] " ix exponentially with depth
= L

»=0.50 o " $

Figure 3-14. Amplitude ratio vs. dimensionless depth for Rayleigh wave.
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\ Ground motion vs geology,
o e location, depth

e Geology: hard rock is preferable
=> fast motion is better correlated (as v larger and A longer)

e Location:

=> avoid external cultural noise,
especially for shallow tunnel

 As geology and noise depend on depth,
we have one more degree of freedom
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What Is best way to hide from
external cultural noises?

»

Attenuation of waves:

<
\/E expl - 7T(|’ - rO) exp _D Raylelgh Q
r QA A on-surface h
X o\ \ Soft ground
geometric dissipative P vy

¥
Ty expl - mr—r)| p- or s-waves
r QA in depth

A - wavelength; v - sound velocity; ry~ M2; Q - can be 10 - 25
for near surface ground and up to hundreds for bedrock

e Attenuation of on-surface waves is
slower than in-depth waves Ideally, the impedance of the

i top layer(s) should be << than
e Typical layered ground struc_ture of the lower layers
helps prevent noise penetration to

lower layers 100m depth may be worth
e Top layers may have resonances many km in r

e Go deep if cannot go far from noise
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NLC sites & Ground motion

»

e NLC sites
considered
In California
and Illinois
so far: IL

Also considered /

for VLHC

CA, IL

CA

On-surface injector
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a

l\ NLC deep tunnel @ Fermilab *T_,

Soft upper layer protects tunnel
from external noise

GALEHAPLATTEVILLE GROUP

~ (#Ha0 S—

e Tunnel is placed ~100m deep in geologically (almost) perfect
Galena Platteville dolomite platform

e Top ground layer is soft (NUMI geological studies : v,/v, ~ 5/1
for 1st transition) - this increase isolation from external noises

« When choosing depth - optimize not only for boring conditions, but also
for vibration attenuation - each layer makes tunnel more quiet
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NLC deep tunnel CA sites
127&145

iy "’, Wk S

:'? ._,.IJIF F :Inl-u k]
S8 g ("

]

]
Q‘-rr-.rh-iu ";,_—I~ B 7

| . ._ ..: 5

ap«a—‘-—'
| & [ tEEd

Site 145

e

BT 5 DT

AR .-:rnr_
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. NLC

Fast Ground Motion again
geology & cultural noise

e Deep tunnels are quiet
— Care about in-tunnel noise

e Shallow (not deep) sites usually

n

oISy

— Because of cultural noise

- Resonance of clay/sandy site itself

e E.g. resonance of LIGO sites:

- 1-5Hz Livingston L1GO site
(water logged clay)

- 5-12Hz Hanford LIGO site
(dry sand)

( Courtesy LIGO & F.Asiri )

10° T T T
. f& Cultural noise -
% O
“-w\; - & geology ?
1077 Tang ¥, 0 .
T
5 107
S o UNK tunnel
G ¢ LEP tunnel
E 10_7 | Hiidenvesi cave
o HERA tunnel
- a SLAC tunnel
= SLAC 2am model
| = = HERA model
10710 LEP mode|
—_ 1w
10—1 3 | |
10" 10° 101 102
S Frequency (Hz)

8602A43

Resonance (?) of sandy HERA site
+ cultural noise may be reason for
large noise at DESY

Relative motion ~ 100nm, F>1Hz
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Resonance of shallow sites

. NLC

e Resonance of LIGO sites: Noisy Period Y-end
— 1-5Hz LiVingSton LIGO site ﬂl]__flrge microseismic peak (0.1 - 0.2 Hz) and truck passing on 240 (5 - 10 Hz)

(water logged clay) ;
10" % i = =i

X 2 spectra pasted at 2.5 Hz
LY LIGO standard
107 et

- 5-12Hz Hanford LIGO site
(dry sand)

Y displacement (meters ims [ sqrtHz)))

107 10° 10 10°
Frequency (Hz)

( Courtesy LIGO & F.Asiri )
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Fast Ground Motion
IN NLC and TESLA

T~ \absolute
] ~

~

_:_1Qnm

“HERA ground
motion” model

i tolerance

“SLAC ground
motion” model

Integrated rms motion, micron

1E-4

Frequengy,

1E-4 1E-3 001 0.1

For linac quadrupoles, tolerance

roughly 10nm for both
(-> 0.250y NLC ; O.lcry TESLA)

Rep.Rate of bunch trains:
120Hz @ NLC -> F. ~ 6 Hz
S5Hz @ TESLA -> F. ~ 0.2 Hz

NLC is OK at quiet site

For TESLA, motion above
tolerance even at ~quiet site

But hopefully TESLA can rely on
fast correction within bunch
train (rep.rate of bunches
3 MHz F. -> 100kHz )
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\ Differences of approach to
e collision stability

e TESLA

— Cannot rely on quiet site
— Rely on fast correction within bunch train

Both require good girders
e NLC (low amplification by cryostat)

- Rely on quiet site
— Actively stabilize final doublets

— In addition, use fast correction within bunch train
(more difficult because of 1.4ns bunch separation)
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K Slow motion (minutes - years) (&)
N ‘ : I

e Diffusive or ATL motion: AX2~ATL [Baklakov et al.]
(T - elapsed time, L - separation between two points)

(minutes-month)
e Observed ‘A’ varies by ~5 orders: 102 to 104 um4/(m-)

- parameter ‘A’ should strongly depend on geology -- reason for
the large range

e Systematic motion [R.Pitthan] : ~linear in time
(month-years), similar spatial characteristics

* In some cases can be described as ATTL law :

— SLAC 17 years motion suggests AX?=AsT2L with
As ~ 4-10-12 ym2/(m-s?) for early SLAC
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How one would measure slow motion?
Example: Hydrostatic level system

R

[ to a PC and Power Supply

HLS used in Aurora mine
[J.Lach, V.Shiltsev et al]

Station 0 Station 1

L2 L3 L4 L5 L6 L7

Single tube version

I ' | g | ' I ) I ' I 4 I ! I
0 30 60 90 120 150 180 210m

N «—_ New HLS developed at Budker INP
that will be used in further studies
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Slow motion
example: Aurora mine

.

e Slow motion In 0.5
Aurora mine 0.4
exhibit ATL

) 0.
behavior

o
\S)

dY”2, micron™2, rms
e

e Here A~ 5*10-/
um2/m/s

<
o

40 60 80 100
Time interval T, min
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K Diffusive or ATL motion
.NLC

e Movie of Diffusive (ATL) ground motion

) 5 : : : :
S|mulateC_i Time= 0.0025 case 1
ATL motion

e Note that it
starts
rather fast

Vertical position
-

e X2~ L

e and It can
change

direction... 0 20 40 60 80 100
Longitudinal position
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\ Systematic motion

N..c SLAC linac tunnel in 1966-1983

e Year-to-year
motion Is dominated

by systematic
component

LINE | Sawm bire 1548
T oR1IRAT D59
¥ +1970, 71 Mk
& 1971, 74,18 -
£ HLIRE,PT.TH
& & 79,80, 8L
T o+1W8EA%

(03

e Settlement...

VERTICAL DISPLACEMEMT OF LIMAC TURNEL
0001 1N

I
50 100 |80 200 250 300

Figure T: =plarement of the SLAC Linare Tunwel - Verlwal
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Systematic motion

Movie of
simulated
systematic
motion

Note that
final shape
may be the
same as
from ATL

And It may
resemble...

Systematic ground motion

Tin"ie= 0.0'1 | case '1

Vertical position
O

0 20 40 60 80 100
Longitudinal position
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Topography of many natural surfaces exhibits

AX?~A L behavior
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SLAC tunnel drift studies

Andrei Seryi, Snowmass 2001, July 17



Slow transverse relative
drift of SLC tunnel

R

SLC tunnel 80
deformation is | ‘
correlated with Pressure
atmospheric 40
pressure § | %

E . -
Reason: ~ @
landscape and : - %
ground property 40
vary along the
linac T

Y - vertical I" X- horiz.
B0 T 1012
. 342 345 348 351 354 357 360 363 366 369 372

Motion shows Time (day) 1999|2000

diffusive or ATL
character
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Tidal motion of the SLAC
linac tunnel

. 10—

) Subset of data where 1 ”
.g tidal motion is seen 1.00 —

E* . most clearly. 1

5 | 96

g -10 — ]

% i

;a =20 —

15.0 13.5 16.0 280 29.0 300
352 353 354 355 356 .
Day of 1999 Harmonic speed (degree/hour)

N2 M2

o=

o

=3
|

o

)

¥
|

1/sum(dx**2)

Fit of 3 major
tidal harmonics

[=]

oo

oo
|

[

B
=]

e Second order effect (curvature change)

e Observed tidal motion ~100 times larger than expected for
oceanless Earth

« Enhanced by tidal motion of ocean water that produce additional
loading in vicinity (~=500km) of the shoreline

e Tidal motion is slow, predictable, it has long wavelength and is not a
serious problem for a collider
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\ Tidal motion observed by LEP
.NLC

LEP TidExperiment
e Change of LEP energy due 200 11 Nov, 1992
to change of LEP - Rectvemergychangs
mecsurad by rescnond depolorizotion

circumference PPM | e expectation { —sirain/a,

e First order effect
(stretching)

e Surface move +-0.25m

e« Change of LEP
circumference ~1mm

.2[}0-'-'!...ll.tr.u1,..|...s
0 4 & 12 16 20 24

L.Arnaudon, et al. CERN SL-93-20 Time {(hours)



\ Atmosphere causes “A” of ATL ¢ f‘
i to vary in shallow tunnel

e Parameter Ap of ATL
correlates with amplitude
of atmospheric pressure
variation

 For deep tunnel the
atmospheric contribution
to Ag should vanish
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‘Slow’ Ground motion
L nic at NLC and TESLA

e Diffusive or ATL motion: AX?~ ApTL
e Produce misalignments and result in emittance growth
« TESLA : Low wakes -> smaller o and Ae (b 2)

Place A  um2/(m-s) N v

TESLA: Undisruptive © & &
—_ -5 R — i «
R_Brirtlmisﬁ AL 10 realignment ~every month A

FNAL surface | (1-10)*10-°

V.Shiltsev,et al.
SLAC* ~ §*10-7 NLC: Undisruptive Q‘E

¢ realignment ~every 5hrs &OeQ

Aurora mine* | (2-20)*10-’

V.Shiltsev, et al.

Sazare mine ~ 5*10-8 ¢ NLC_: Undisruptive
realignment ~every 2 days

S.Takeda,et al.

* Further measurements in Aurora mine, _ _ _ _ o
SLAC & FNAL are planned Undisruptive = can collide while realigning
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»

Three types of motion iIn

one model

e A ground
motion model
based on P(w,k)
spectrum can
be build

sqri(<(x1-x2)**2>) (m)

5 5 o5 B g
o0 n EN
Illlld IIIIII,I,I,I IIIII|,|,|,| IIIII|,|,|,| IIIIIIIII IIIIIII_II IIIII|_|,|I [ |

!
<

—

Waves only
ATL only

Ju—
o
—
<=

[—

T

—

—
I

Systematic

Systemat. only

1E-3 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8
time (sec
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Slow motion questions
and recommendations

e Reasons for slow motion

- Atmosphere, underground water, dissipation of high frequency
motion. What else?

 Dependence on geology, tunneling

- Geology: good hard rock is preferable

=> slow motion has lower amplitude
=> collider stability time is larger

— Tunneling:
=> TBM preferable; avoid blasting
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\ One need to firmly connect
o e to ground by good girders

i

e FFTB quad  ——
== .

 —

Only 2nm difference to =

ground
(on movers, with water flow)

e Further improvements:
lower water flow, lower
girder, permanent quad

v

-\
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\ Linac quads need to be
e quiet & near vibration free
/' Low water flow EM quads NLC PM sliding shunt quad

NLC Permanent Magnet J.Volk et al., FNAL
linac quad prototype

\ ™~

NLC linac EM quad
Ch.Spencer et al.

TR

NLC linac corner
adjustment PM quad
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Conventional Facilities in&near tunnel
noise need to be minimized

l NLC

e Need to minimize CF Chiller equipment at the L1GO
noises Hanford site

Bl e
e Unusual practice for 1y |
accelerators, but

e Inexpensive solutions
exist

e Successfully used In
LIGO

e« Can be applied to NLC

LIGO = Laser Interferometer
Gravitational-wave AHz7 spring

Observatory) isolator

Courtesy: L1GO
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Stability of Final Doublet need g
to be provided by active methods<=*

. NLC

e FD feedback position stabilization and/or
feedforward magnetic center correction

<107 STACIS ON/OFF TRANSIENT
i ! i .
LA ' |
i 1"1 \

e 1996 - tests of
STACIS ‘

e Achieved:
40nm -> 2nm for £2Hz

(in noisy room) . 1
r‘\\ g |
: q -1.51
TeE UG STy, 20, RS .
o L’ %o 3 Stacis oeet < s ’0 25 s 0 15 20 25
SECONDS
TMC STACIS

Active Piezoelectric G.Bowden, et al. 96

Vibration Control System

e 2000-2001- develop digital feedback stabilization; compact;
will optimize for 2 long FD; high magnetic field compatible

Andrei Seryi, Snowmass 2001, July 17



Inertial dlgltal feedback is one of ‘r )

k..

e Inertial stabilization In
6D at SLAC for NLC

Inertial
sensors

Springs &
electrostatic &% :
pushers S T s S

ol
| J.Frisch et al

« June 2001 - start of stabilization work
e« Achieved ~10 times reduction, work to improve
e Next step: stabilize large realistic FD model

Andrei Seryi, Snowmass 2001, July 17




IP collision stability

e TESLA needs fast IP feedback to provide collision stability
e Large bunch separation (300ns) simplifies its implementation

beamilne axis (m) (a) Separation Response

8

offset feedback OFF |

offset feedback ON |

vertical displacement (pm)
E 8 8

Vertical Offset (Ay/o,)
[
o

N
S

20 40 60 80
Bunch #

o

Digital Controller

o

Andrei Seryi, Snowmass 2001, July 17



\ Very Fast intratrain feedback for
R additional collision stability of NLC
e This Is not a required, but additional NLC system

It decreases sensitivity to beam jitter
and ground motion

A8

Rou gls -Trip
Delay
Reset

BPM
Processor

Oxford Univ., SLAC

S.Smith, SLAC,
LCC-0056, March 2001 Andrei Seryi, Snowmass 2001, July 17



»

NLC Very Fast intratrain feedback

e Due to round trip delay
compensator the convergence

IS very fast \

« NLC stability will be provided
by other systems, but

e Even if all other system fail,
can recover almost full
luminosity

(80-50% for 5-50 O beam jitter)

 Angle feedback is not yet included
In considerations

e Now in lab, later beam tests

Beam Position at IP

Beam 1

s

. Beams at IP-
_Beam 2 |

Il Il Il Il |
50 100 200 250
Time (ns)

Beam Position at BPM, BPM reading, and Kicker Amplitude
T T T
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\ Summary
INLC

e Ground motion and vibration are important for
any future collider, in particular LC

e Have measurements data from around the world;
develop models of motion

A lot of experience on beam-based feedbacks
from SLC - basis for confidence

e Active suppression system being developed
e Learning from other fields (e.g. LIGO)

It would require patience, but the problems
appear solvable
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