Chapter 5

ENVELOPE EQUATION

We often read that when the linear part of the space charge force is added to the linear
equation of motion, it produces an incoherent tune shift, which if large enough can place
individual particles onto low-order betatron resonant lines resulting in an instability.
This picture, although appealing, is very misleading. In fact, the resonant driving force
drives the beam to resonance only when the coherent space charge tune shift lands the
coherent betatron tune of the beam onto the resonance lines. We are going to show that
resonant driving force of any order will not affect an individual particle when the space
charge force shifts its betatron tune onto the resonance line of that order.

5.1 The Integer Resonance

In this section, we are going to study the effects on beam particles under the influence
of errors in the dipoles. We will find that although the beam center is able to see the
force from the dipole errors, it will not see the self-fields from the beam particles. On
the other hand, a single particle sees the self-fields and has its betatron tunes shifted.
However, a single particle oscillating at an integer tune will be not be driven by the
dipole-error force. We shall follow a discussion by Baartman [1].

The integer resonance is driven by errors in the dipoles around the accelerator ring.
The transverse motion of a beam particle is governed by
d*X
d—W +”ng = Fyeo + Feu(¥) (5.1)
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where

5 ds
v= /0 Yoz B(5) (5.2)

is the transverse Floquet phase which advances by 27 per turn, X is the normalized
transverse offset (actual offset z divided by square root of the betatron function £,),
and v, is the bare betatron tune. The force* due to errors in dipoles in the z-direction
is represented by F, (1), which is periodic in ¢ and is X independent. The space charge
force Fy.,, if linear, can be written as

Foew = _2VO$AVSC(X - <X>) ’ (53)

where (X) is the transverse offset of the center of charge of the beam and Aw,, is the
incoherent space charge tune shift depicted in, for example, Eq. (4.24). The equation of
motion becomes

d’X
d—wQ + ngX = _2VOmAVsc(X - <X>) + Fem(d)) . (54)
Taking the average, we obtain the equation of motion for the center of the beam,
d*(X
diﬁ?> +V§w<X) = Feu(¥) . (5.5)

The space charge term disappears, indicating that the motion of the center of charge
is not affected by the space charge self-force. Physically, the beam transverse motion
is rigid and therefore the center cannot see any change in the pattern of the space
charge self-field. In other words, there is no coherent dipole space charge tune shift.
However, we do see that the center of the beam is driven by the dipole force due to
lattice error. The beam will be unstable if the coherent tune v,, or just bare tune here,
is equal to an integer. Another way of saying the same thing is that as the coherent tune
approaches an integer, the closed-orbit distortion, being kicked in the same direction
in every turn, increases without limit. To show this more clearly, let us write the
nth-harmonic component of the periodic lattice-error force as F,,(v) = fne™. The
particular solution of Eq. (5.5) is

fn einw

2 _ 92

(X) = (5.6)

*Here Fy., and F,, do not have the dimension of a force. They should be forces divided by
appropriate variables. But for simplicity, we just call them forces.
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which is indeed unstable when the vy, = n.

The incoherent motion is obtained by subtracting Eq. (5.5) from Eq. (5.4),
d2
dy?

showing that an individual particle is making betatron motion about the center of the

(X = (X)) + (18, + 200z Avs) (X — (X)) =0, (5.7)

beam with the incoherent betatron tune vicon = vos+Avg.. It is important to notice that
the incoherent equation of motion contains no driving terms for the integer resonance.
Therefore, incoherent motion is not affected by dipole errors. This means that the
incoherent tune can be equal to an integer with no adverse effects. It is worth re-
emphasizing: A particle which is shifted by direct space charge to a tune of exactly an
integer, turn by turn sees the same dipole errors at the same betatron phase, and yet
is not even slightly affected compared with other particles which do not have an integer
tune. This is not due to space charge stabilizing the resonance, as claimed by Ref. [2],
because in this example of linear space charge, there is no incoherent tune spread to
generate Landau damping. The correct answer is simply no driving term for incoherent
motion.

This concept can be extended easily to any nonlinear space charge force. For the

1th particle, the equation of motion is
d?>X;
di)?

+ 15, X = ZIFU + Fex (5.8)
j

where Fj; is the force of the jth particle acting on the sth particle, and Z; implies a

summation over j but with j = 4 excluded. Thus, Z; Fj; is just the space charge force on

the ith particle. We now take the average of Eq. (5.8) by summing over i, giving exactly

Eq. (5.5) again. This result is obtained because of Newton’s third law: F;; = —F}; when

i # j. Subtracting Eq. (5.5) from Eq. (5.8), we arrive at the incoherent equation

T (X = () 48 (K= (X)) = 3TF (5.9)
J

Again, there is no dipole driving force for the equation of incoherent motion. The space

charge self-force, being nonlinear, does not just reduce to a simple incoherent tune shift.

The incoherent tune will be different for different particle depending on its amplitude

and the transverse beam distribution. However, whatever the incoherent tune is, even

at an integer, the individual particle will not be affected by the dipole lattice error at
all.
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5.2 The K-V Equation

Now let us come to the errors in the quadrupoles. This force, denoted by X F(v)) is
responsible for the half-integer resonance. Sometimes it is also called the linear error
force, because quadrupoles are linear elements of the accelerator lattice. The equation
of transverse motion for a particle is

X
dry?

where a linear space charge force —21p, Avy,(X — (X)) has been assumed. Coherent

+ 12X = —200,Av, (X — (X)) + XF(¥) , (5.10)

motion is obtained by averaging Eq. (5.10),

d*(X
) = COF) 5.11)
and the difference gives the incoherent motion
d2
e (X = (X)) + (Vo + 2v0sAvse) (X = (X)) = (X — (X)) F(¥) . (5.12)

It appears in Eq. (5.12) that the incoherent motion is driven by the quadrupole-error
force so that the particle will experience an instability at the half integer. This conclusion
is incorrect, although there is nothing wrong with the derivation from Egs. (5.10) to
(5.12). A quadrupole in the lattice will change the size of the particle beam and so
will the quadrupole-error force. The incoherent space charge tune shift depends on the
beam size, which is a function of the quadrupole error force X F'(). Actually, the effect
of the quadrupole-error force inside the incoherent space charge tune shift just cancels
the quadrupole-error force on the right side of Eq. (5.12), leaving behind an incoherent
motion not affected by the quadrupole-error force. To demonstrate this, we need to
study the equation of motion governing the beam size or beam envelope.

The dipole coherent tune shifts are zero because the beam center does not experience
any variation of the forces between beam particles, when the beam is executing rigid
dipole oscillations as a whole. Thus, the space charge forces do not affect the restoring
force of rigid oscillation and therefore do not affect the dipole coherent tunes. However,
there are other collective modes of oscillation in a beam. Examples are the breathing
mode, where the transverse beam size expands and contract without the beam center
being moved, and the mode when the breathing in the two transverse directions are 180°



5.2 The K-V Equation 9-5

out of phase. The restoring forces of these modes of oscillation do depend on the forces
between the beam particles. Thus, their frequencies of oscillation are affected by the
space charge forces. To study these modes, we need to resort to the equations of motion
governing the beam envelope.

The envelope equation was first derived by Kapchinsky and Vladimirsky [3] for a
coasting beam with uniform charge density and elliptical cross section. Later it was
generalized by Sacherer [4] to include any distribution when the beam envelope I is
replaced by the rms beam size & = 4/(22) of the beam. We are going to follow Sacherer’s
approach.

Consider an ensemble of particles that obey the single-particle equations

[
z _pza

5.13
p! = Fy(z,s) (5.13)

where z is the transverse offset, p is the canonical momentum, and the prime denotes
derivative with respect to time s, the distance along the designed orbit of the accelerator.
The total force' in the z-direction,

Fl‘(xa S) :Fscm+Fextm ) (514)

includes the space charge self-force Fi., and the external force Fy;,. Averaging over
the particle distribution f(z,p,s), we obtain the equations of motion for the center of
the beam: /
(z)" = (pa) , (5.15)
(pz>l = <Fm($a 5)) = <Fextz> .
where the last equation follows from (Fj.,) = 0 because of Newton’s third law. Note
that the order of the averaging and differentiation with respect to s is immaterial and
can be interchanged if one wishes. For a linear machine, for example with only dipoles
and quadrupoles in the ring, the external force is linear. We can write Fey, = Ky (s)z,
and the equation of motion governing the center of the beam becomes

()" + Ky(s){(z) =0, (5.16)

which involves only first moments and is independent of the space charge force or the
detailed form of the beam distribution.

tWe call them forces, although Fj(z,s), Fiscz, and Fey, do not have the dimension of a force. Note
that they have different dimension from the forces introduced in Eq. (5.1).
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The second moments satisfy the equations
(@?) = 2(zz’) =2 (zp,) ,
(@po)’ = (z'Pa) + (zpg) = (P7) — Ka(s)(2?) + (2Fsea) (5.17)
(p3) = 2(pp;) = —2K,(s)(wps) + 2 (PoFica) -

Notice that this set of equations is not closed because (rF.,) and (pF.,) are usually
functions of the higher moments like (z"), ("p,), etc. As will be demonstrated below,
if the self-force is derived from the free-space Poisson equation, (xF}.,) depends mainly
on the second moments and very little, if at all, on the higher moments.

Let us introduce the rms emittance

By = /(2?) (p2) — (zps)? . (5.18)

Using the rate of change in the second moments in Eq. (5.17), the rate of change of the

rms emittance along the accelerator is

xpz) <$Fscz> - <£E2> <szscm>
E, '

B =S (5.19)
Thus, the rms emittance is an invariant provided that the space charge force is linear,
or when it can be written as Fy., = €(s) (z — (z)). However, if we assume that the rms
emittance is either time invariant or its time dependency is known a priori, (p2) can be
expressed in terms of (z?), (zp,), and E,. Then, the first two equations in Eq. (5.17)
form a closed set, and they can be combined to give

B E2  (zFy,)

"+ K(s)z

=0, (5.20)

z3 z
where £ = /(2?) is the rms beam size.

The space charge term has an interesting interpretation. If we define the linear part
of the space charge force Fj., as £(s)z, where £(s) is determined by minimizing at a
fixed time

D= / [e(8)x — Fieo) nlz, s)dz (5.21)

where the linear distribution is

n(z, s) = /f(x,p, s)dp , (5.22)
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and the phase-space distribution is f(z,p, s), then we obtain

e(s)r = <xF5”>x : (5.23)

~2
z
In other words, the rms envelope equation depends only on the linear part of the space

charge force determined by least square.

Finally, let us express the envelope equation in terms of the static electric field £, of
the space charge self-force in the z-direction and put back all the missing factors. The
envelope equation in the mks units now reads

E? e (z€;)
—= - =0 5.24
73 m73ﬁ202 ¥ ? ( )

"+ K(s)Z —

where m is the mass of the beam particles. In the denominator, we have the Lorentz
factor v(3? because of Newton’s second law and the other v? because of the presence of
the magnetic field of the beam in the laboratory frame, as demonstrated in Eqgs. (4.23)
and (4.24).

5.2.1 Omne Dimension

Consider a very long beam traveling in the z-direction with very wide width in the y-
direction. The situation can be approximated by a one-dimensional beam having space
charge self-force only in the z-direction and we assume that its distribution is symmetric
with respect to the x = 0 plane. The static electric field £, in the z-direction is given
by Poisson equation

o0&, e
= — 2
0 = Snas). (5.25)
from which -
£ =2 n(z', s)dz' . (5.26)
€0 0

Here, n(z, s) is the particle distribution per unit volume. Therefore, when integrated
over x from —oo to 400, it is normalized to o, the particle density per unit area in the
y-z plane. Since the electric field is proportional to the fraction of particles it encloses
between +x, we must have &, « 1/z. Thus,

(o€, _ 3/:3“ @dx /own(x’)dxl _@ (5.27)

T € oo 1/2 2¢
0 [ / $2nfjx) dfc] 0
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where we have defined the dimensionless parameter

zjf:xh@o¢ﬁﬁwhu0df

[/Zx%@M4U2

We have introduced a new distribution function h(z) = n(z)/o so that o, the particle
number per unit area in the y-z plane, is factored out and h(x) is normalized to unity.

0= (5.28)

It is important to point out that while p is dimensionless, h(z) can be scaled to anything
that is convenient. For example, in a uniform distribution, we can choose the edges as
41, and in a Gaussian distribution, we can choose the rms spread as 1. Substituting in
Eq. (5.24), the one dimensional envelope equation now becomes

"+ K(s)i——=———0=0, (5.29)
I

where ry = €?/(4megmc?) is the classical radius of the beam particles. Table 5.1 shows
the values of g for four distributions. We see that for a wide range of distributions that
are likely to be encountered, the variation of g is less then 2.3%. Thus the one dimension
rms envelope equation will be accurately described by Eq. (5.29) with o = 1/v/3.

Table 5.1: The values of the dimensionless parameter g for a wide range of distri-
butions. They are all close to 1/+/3.

Distribution h(z) V30
L <

Uniform 2 o[ <1 1.000
0 lz| > 1
3 (1 — 12 <

Parabolic (=) fol <1 g6
0 lz| > 1

Gaussian ﬁ-ﬁe‘ﬁﬂ 0.977

Hollow ﬁm%—m 0.987

For a uniform distribution in one dimension, the half widths of the beam is & = /3%.
The full emittance is ¢, = 3F;, since we also have p, = v/3+/ (p2). The envelope equation
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for the half beam width in one dimension becomes

e 2rrgo

~n -, T
z +K(S)£L‘—ﬁ— T

=0, (5.30)

where ¢ = 1/+/3 has been substituted.

5.2.2 Two Dimensions

With the absence of cross-correlations and coupling terms, the rms envelope equations
in the two transverse directions are given by Eq. (5.24) and the two space charge terms
(xFcz) and (yF.,) depend on the particle distribution. It will be shown below that
(xFs.,) and (yF,,,) depend only on second moments if the distribution has the elliptical
symmetry

scy
2 2

n(z,y,s) = n(% + ’Z—Z, s) , (5.31)

which when integrated over = and y gives the linear particle density A. Corresponding to
this distribution, the static electric field in the z-direction at a fixed location s is given

by
eabr [ n(T) du
£ 2¢o /0 a’? 4+ u D(u) (5.32)
where
D(u) = /(a2 + u) (b + u) (5.33)
and ) )
€ )
T = . .34
a2+u+62+u (5:34)

The validity of Eq. (5.32) can be verified by computing the divergence of the electric
field. We get

08, _eab [* du [n(T)  22°n(T) (5.35)
or 26 Jo D(u) [a2+u (a2 + u)? '
Changing variable of integration from u to T',
72 y?
dT = — d 5.36
[(cﬂ T T @ +u)2] v (5.36)

and noting that

dinD(u) 1 1 1
— = 5.37
du 2(a2+u+b2+u> ’ (5:37)
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we arrive at

V.6 = [ Ooo Dd(’;) Qn(:/“)Ln dlz(“) — / ::O dr Qg'(g)} , (5.38)

The variable in the first integral can now be easily changed from u to 7', and we obtain

~ = eab [*T% n(T) dD n/(T)
E = = T |22\
v-e € Ju—o d { D2 dT D
\ \ (5.39)
eab [T d n e T Y
e [ d e, (2 0
€0 Ju—o dT’' LD €0 " <a2 + bQ>
as required by Gauss’s law. In passing, we give also the electric potential
eab [ du T
Sz, y) = ——— —/ dT' n(T") . 5.40
@) =% [ pey | @) (5.0)

Now we are ready to compute (z&,) and (y£,). By definition,

(z,) = 22 ooDd(Z) /oo @/m dyn(T)n(x—2+ Z—j) L (541

- 2 2
260 Jo L 0FF U S a

This suggests the change of variables z and y to the circular coordinates r and 6,

. x o Y dzdy

TCOSO—\/ﬁ, 7°sm9—\/m —>D(u)—rdrd0. (5.42)

We also let ) ) ) .

z a” +u +u .
2 =+ Z—Q =72 [ = cos” 0 + - sin? 0} : (5.43)
The integration variable u is now changed to ' with
2

owldr’ = — (a®sin® 6 + b* cos® 0) du (5.44)

a?b?
with the integration limits v from 0 to co changed to r to co. All these changes convert
Eq. (5.41) to
3b2 00 o0
(z€,) = m/o n (r?) 27T7“d7‘/r n(r'®)2mr'dr’ (5.45)
where the integration over 6 has been performed with the help of

2m cos? 0 27
df = . 5.46
/0 a?sin? 0 + b2 cos? b(a + b) (5.46)
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Note that the variables r and r’ carry no dimension. With the new defined function

Q(r) = ab /T n(r'2)27rr'd7" with  Q(o0) =\, (5.47)
0
Eq. (5.45) can be integrated to give
_ ea ©dQ(r) _ ea\
(&) = 2megA(a + b) /0 dr dr A= @] = 4meg(a + b) (5.48)

Since Z = y/{(2?) x a and § = 1/(y?) < b, we obtain the final rms envelope equation in
two dimension:

J"+Ky(s))— = — 5 ——==0. (5.49)

For a uniform distribution with elliptical symmetry in two dimensions, the half
widths of the beam are £ = 27 and § = 23. The emittance is €, , = 4F, ,, since we also
have p,, = 24/(psy). The envelope equation becomes

2
N R €y 47"0A 1
K — = ——————=0. 5.50
) + y(S)y gg ,YgﬁQi_ 4 /g ( )

These are just the well-known K-V equations. However, the rms envelope equations
depicted in Eq. (5.49) are not restricted to the uniform K-V distribution and are valid
for any distribution with elliptical symmetry.

Two comments are in order. First, the distribution with elliptical symmetry, rep-
resented by Eq. (5.31), is a very general distribution. Nearly all practical beam distri-
butions fall into this category. Therefore, Sacherer’s conclusion that (z€,) in Eq. (5.48)
does not involve moment higher than second order is remarkable. Second, the rate of
change of the beam emittance E,, Eq. (5.19), depends on both (z&,) and (p,&,), and
will vanish if both of them do not involve moments higher than second order. Unfortu-
nately, (p,&;) does depend on moments of the beam which is higher than second order.
As a result, the emittance introduced in Eq. (5.18) is time dependent and this renders
the rms envelope equations not a closed system. The set of rms envelope equations is
only closed when the distribution is uniform. It can be shown that the rate of increase
of emittance is just proportional to the energy of the part of the space charge self-field
that is nonlinear [5, 6, 7].



5-12 5. ENVELOPE EQUATION

5.3 Collective Oscillations of Beams

5.3.1 Omne Dimension

The one-dimension envelope equation for uniform beam, Eq. (5.29), contains the external
focusing term K,(s), which includes both the ideal quadrupole focusing force and the
gradient errors. We first eliminate the rapidly varying part of K,(s) from the envelope
equation by introducing the Floquet phase advance v,, which increases by 27 each

o ds
(2 —/0 vonBa(s) (5.51)

where 1y, is the bare tune and f3, is the betatron function defined in the absence of the
space charge self-force. Next introduce the dimensionless half beam size

revolution turn,

N z
X = : 5.52
where the full emittance €, defined via Eq. (5.18),
€ = 3/ (22 () — (zp2)? | (5.53)

is a constant of motion because the distribution is now uniform and the space charge
force is therefore linear [see Eq. (5.19)]. The envelope equation for a uniform beam in
one dimension now becomes (Exercise 5.1)

?X .2 2mrgo V2B

The last term on the right side depends on s through the betatron function g,. Because
B, is periodic in s or the phase advance v,, we can expand it as a Fourier series. The
oscillatory part is z independent and is therefore similar to the force due to dipole errors
which we have studied earlier in Sec. 5.1. Since it will drive only integer resonance and
we are interested in half-integer resonance only in this section, this oscillatory part is
discarded. The non-oscillatory part is related to the incoherent space charge tune shift
Avge g, or (Exercise 5.2)

2 23/2
2mro0 Vi, Pe

V2 \fer

(5.55)

2V0zAVscw = -
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where (3, is the betatron function averaged over the Floquet phase v and is equal to
R/vy,, with R being the radius of the accelerator ring. In terms of Awvg.,, the one-
dimension envelope equation now takes the simple form?

d2X N
dyp?

2
(Voo + 210, Av, cos nap,) X — Zgz + 205, Aoy = 0, (5.56)

where we have included the part in K(s) that corresponds to quadruple gradient errors
as a force possessing nth harmonic and total stopband width Av;,.

When space charge is absent, the static solution (s or 1, independent) of the enve-
lope equation is just X = 1. Here, static is just mathematically true for the normalized
beam size X. In fact, this solution is not physically static, because it corresponds to the

beam size
T =/€Ps , (5.57)

and [, is a function of s. We can also see how the normalization process simplifies the
analysis of the envelope equation. The solution in Eq. (5.57) says nothing more than
the fact that /B, is the beam radius when the beam is matched to the lattice. In fact,
the envelope equation, Eq. (5.29), before normalizing, is the equation satisfied by /3.

In the presence of space charge, the ‘static’ solution becomes

A

X =1+&, (5.58)

which can be solved as a power series in

_ Aysc;c

A .
0= (5.59)
We obtain A SA2
L=—5+ 8””+(’)(A2) : (5.60)

Since Av,., < 0, the beam size is therefore larger due to the repulsive nature of the
space charge force. This can be viewed as an increase in the betatron function due to
space charge by

/BmVOI
Vog + Al/sc:c '

By — (5.61)

!The incoherent space charge tune shift is negative. Many authors prefer to denote Av,., as the
absolute value of the tune shift. In that convention, the sign in the last term on the right side of
Eq. (5.56) will be positive instead.
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Now we are ready to solve the envelope equation around the ‘static’ solution, for which
we let

A

X =14&+6:(¢) - (5.62)

Here, d, represents the amplitude of oscillation of the beam width about the equilibrium
value 1+&,. We only need d, to be infinitesimal. Therefore, we perform the power series
expansion according to

0, K E KT, (5.63)

and keep only the first order in §,. We also require only an infinitesimal driving force,
because this is what it needs to drive a particle into instability. Thus, we will consider
the width of the stopband Awv,/vg, to be of the same order as §,. This consideration
leads to the equation
d*s,
di;

Thus the beam envelope oscillates with the natural coherent tune 2(1/01 + %Aysw), and

+ (41/& + 61/0IA1/5”) 0p = —200, A, cOSNY,, . (5.64)

resonance occurs when
n 3 1
n? = 43, + 6V0p AVsey or B RS Vog — 1 |AVses| = Vaincoh + 1 |Avgen| . (5.65)
The incoherent tune v;incon = Vor + AvVse, can therefore be depressed beyond the half-
integer 5 by i\AVsch a quarter of the incoherent tune shift before hitting the resonance
as is illustrated in Fig. 5.1. Solution of Eq. (5.64) gives

AV y B 2u0, AV, COS Ny,
7
2, 43, + 6V AVge, — N2

(5.66)

where only the lowest order of Av,,;/vo, has been included. Clearly, this solution reflects
the resonance depicted in Eq. (5.65), although the solution is perturbative and is not
valid near the resonance. We also see the beam envelope oscillate and that represents
a quadrupole breathing mode, which is a coherent mode or collective mode because all
beam particles have to participate collectively to produce this pattern of motion. This
is in contrast to the incoherent motion, where a single beam particle executes betatron
oscillations regardless of what the rest are doing.

Now we are in the position to study whether the force due to quadrupole errors will
drive a single particle unstable at the half-integer resonance. Let us return to Eq. (5.12),
the equation of motion of a single particle, which we rewrite as

d’X

X
- 2 4 205, A, 2) X + 20, AVgep— =0 . 5.67
d¢%+(y0w+ Vos Avg cos ni,) X + 2up, Av % (5.67)
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X

3
4 |AVSC x|

1
|AVge 4 ! 5N

Vincoh = Vox — |AVSC x|

Figure 5.1: Plot showing that the incoherent tune of a one-dimensional beam,
Vincoh = Yoz — |AVscz|, can be depressed to pass the half-integer %n before the
coherent quadrupole tune vg, — % | Avge ;| reaches the half-integer instability.

where X and X are, respectively, the xz-coordinate of the particle and the beam half
width normalized by \/Bz€;. Avseq, as given by Eq. (5.55), is the commonly quoted
incoherent space charge tune shift without consideration of the beam being driven by
the gradient errors of the quadrupole. The correct incoherent space charge tune shift is
actually given by Av,.,/X (see Exercise 5.2). Since we are not interested in the rigid
motion of the beam, the beam center (X) can be set to zero. When the perturbative
solution X of the beam envelope in Eq. (5.66) is substituted, Eq. (5.67) becomes

2

X
a0 + (voz + Aysm)2 X + 2vp, Av, cos nap, {1 +

where the non-resonant free oscillations have not been included. At the particle intensity
which shifts the betatron tune to half-integer, namely vy, + Avge, = n/2, the two terms

2V0wAVscw
43, 4 6o Avgey — 02

X =0. (5.68)

inside the square brackets cancel, and the single-particle equation of motion reduces to
d’X ny2

— —) X=0. 5.69
az (3) (5.69)

2
We see that when the incoherent tune of a particle is shifted to half-integer, the driving
force due to gradient errors cancels exactly. Thus, no resonance occurs for the particle.

The above proof appears to be overly approximated®. The reader can pursuit this
proof to another order of the incoherent tune shift.

. . e 2
$The more accurate condition for envelope instability is 13, — 2 [0z AVsco| = (2)”. So the more

. . . 2 .
accurate condition for “incoherent resonance” is 13, — 2 [Vor Avser| = (%) . Use of these conditions

make the driving term vanish to a more accurate degree.
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5.3.2 Two Dimensions

Similar to the one-dimensional case, we normalize the two-dimensional envelope equa-
tions with uniformly distributed elliptic cross section in the same way by introducing
the phase advances

5 ds 5 ds
e = /0 am md b= /0 5 (5.70)

and the dimensionless half beam radii

T and Y = 4

\% €z vV eyﬁy ’

where vy, and vy, are the bare tunes and 3, and 3, are the betatron functions in the
x and y directions, respectively, defined in the absence of the space charge self-force.

X =

(5.71)

Equation (5.50) that governs the motion of the beam radii becomes

2X V2, a+b

— 4+ 1/23c + 200, AV COS Np Wy X - %= 4oy eAVsep ——= =0

dy? (v6: + 209 Va) X = %5+ 2 aX + bV 5.7
ey NN a+b '
— + (v, + 2v,Avg, COST. Y — =2 4 200y AVgey ——— =0

dy; (v o+ 2w By cosmyy ) ¥ = G+ By ey 5

where a = \/€;8; and b = \/¢,8, are the beam radii defined through the average
betatron functions 3, and By,
2/\7’0R2

¥2B?voza(a + b)

_ 2)\7’0R2
7*B2voyb(a +b)

are the incoherent space charge tune shifts. We have also included the forces due to

AVgey = (5.73)

and Avgey =

gradient errors at harmonics n, and n,.

We first solve for the static beam radii

A

X=1+4¢ and Y =1+¢, (5.74)

in terms of the incoherent tune shifts

A A
Ap= =2 and A, = oY (5.75)

Vg VOy

Up to second order, we get

A, | A2 AN,

ga::__'i'

A, A2 ALA,
2 4 8 ‘

and & =—"2+ -2 -

L 4= - (5.76)
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Next, the infinitesimal displacements 6, and d, are included:

A A

X=1+&+6, and Y=1+&+0,. (5.77)

The derivation becomes very lengthy and uninteresting. For the sake of simplicity, we
study the special case of a round beam with a = b and obtain the equations for small
amplitude oscillation:

d?6,

d,(/)Z + (4 + 5Aw) l/gzéw - yngwéy = _QVSwAVSCU cos an’b"‘v ’ (578)

d25y 2 2 2

P + (4 +5Ay) vh, 0y — V5, Ay0s = =20, Avgy, cos Ty, - (5.79)
Yy

This is just a set of driven coupled simple-harmonic oscillators. For a round beam, we
expect the incoherent space charge tune shifts in the two transverse directions to be
equal. The eigentunes v can be found by solving the eigenvalues of the matrix

47/895 + 5V0$AVSCSE _VOmAVscm
, (5.80)
_VO:EAVSC:E 47/331 + 5VOzAVscz
from which we get
2
v? =2 (v, + v5,) + 502 Alscs \/4 (v, —v3,) + (Vo AVses)” . (5.81)
When the two bare tunes are close so that |vo, — voy| K |VozAVscq|, the two coherent
tunes are
2| L A
47% — AV Avse | v 92 [Alseal |
v’ = , or VR 5 (5.82)
4p* — 6‘V0$Al/sc$‘ 2 (Z/ _ Z |Aysc:1;|> ,

where 20> = v, + v5,. This represents that the two transverse directions are tightly
coupled. The eigenfunctions are ~ (6, + 6,) for the upper solution and ~ (6, — ¢,) for
the lower solution. Thus, the upper solution is the symmetric breathing mode where
the oscillations are in phase in both transverse directions and the tune is v — %|Asca;|.
The lower solution is the antisymmetric mode where the beam envelope oscillates out of
phase in the two transverse directions with tune v — %|ASC$\.
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If the tune split is large so that |vg, — voy| > [0, AVses|, the oscillations in the
two transverse directions are almost uncoupled. The envelope oscillations in the two
transverse directions are just two independent oscillators. The two coherent tunes are

V' = or  UX (5.83)

5
) { 4ng — 5|V AVse | 2 (Vow ~3 ‘Aysc;v‘)
by~ 5
4V0y 5|V0;1;AVSCI| 2 (V()y - g |AVscy|) .

Let us come back to the situation of no tune split. Suppose that the bare tunes
Vg ~ Voy ~ V are Av above a half-integer or integer. We try to increase the beam
intensity. and the incoherent tune shift |Av.,| increases accordingly. We will first
meet with the condition %|Auscw| = Av and the antisymmetric mode becomes unstable.
However, the incoherent tune, vy, — |Avg.,| has passed the half integer already by a
factor of %. The symmetric mode will meet with the half-integer and become unstable
much later when |Avg. | = 2Av.

Similar to the one-dimensional case, the oscillatory solutions for the envelope radii
can be solved. When substituted back into the single-particle equations of motion, we
can verify that the driving force vanishes when the incoherent equations are at half
integers, showing that the incoherent motion of individual particles can have their tunes
right at half-integers without instability.

Other distributions can be analyzed in the same way. Notice that, for a round
beam, the space charge tune shift Avg., in the last term of Eq. (5.72) is
NT() N’f’o

Avgy = — — : 5.84
v 273 5% 87mY3 B2 €rms ( )

where N = 27 R is the total number of particles in the beam, € is the full emittance of
the uniform distributed beam and €,y is the rms emittance. Now rewrite Eq. (5.84) as

1 NT'()
AVgeq = 2 [—m] ; (5.85)

where the square-bracketed term is the maximum incoherent space charge tune shift of
a bi-Gaussian distributed round beam. Thus what we need to remember is that the
factor Av,., in the envelope equation represents one half of the maximum incoherent
space charge tune shift for bi-Gaussian distribution. We mentioned before that for the
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case of strong coupling, the tune depression of the antisymmetric mode is %|Ayscz| and
the incoherent tune shift can exceed that needed for coincidence with a half integer
resonance by a factor of %. Now for the case of the bi-Gaussian distribution, the tune
depression of this mode becomes % X % of the maximum incoherent space charge tune
shift for the bi-Gaussian distributed beam, and therefore the incoherent tune can exceed
that needed for coincidence with a half-integer resonance by as much as a factor of %

For this reason, we define a parameter G, such that Eq. (5.84) can be written as

1 | max incoherent

AVseq = G |sp ch tune shift | - (5.86)

Then, the incoherent space charge tune shift for the distribution considered will exceed
the tune depression of a particular collective quadrupole mode G times better than if
the distribution is uniform.

If we neglect the time dependency of the emittances, the rms envelope equations,
Eq. (5.49), say that the space charge effects of all beams are the same if they have
the same rms widths and emittances. These beams are called equivalent beams. For
example, an equivalent uniform beam implies that the beam has the same rms dimensions
as a uniform beam.

5.4 Simulations

5.4.1 One Dimension

Baartman [1] performed simulations with up to 50,000 particles according to the equation
of motion:
1" + iz = az™ " cos(nf) + Fi. . (5.87)

Here, the driving force leads to resonances whenever the tune v satisfies mv = n. The
space charge self-force F;, on a particular particle in the simulations is simply equal to
an intensity parameter multiplied by the difference between the number of particles to
its left and to its right.

For a sextupole force (m = 3) and bare tune equals vy = 2.45, the relevant resonance
is at n/m = 7/3 = 2.3333. We expect to see the beam in resonance when the coherent
tune veon = vy — Cs3|Avg| = 7/3, where Avg, is the incoherent space charge tune shift
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Figure 5.2: (color) Plot of the rms size (thick curve at center) of the simulated
one-dimensional beam of Gaussian distribution as a function of the incoherent tune,
which is used here as a measure of the beam intensity. Obviously, there is no effect
on the beam when the incoherent tune crosses the 7/3 resonance. But the rms beam
size increases very suddenly when the incoherent tune reaches 2.3167 corresponding
to the 7/3 resonance of the coherent tune. See text for the other curves.

and Cs3 = 7/8 by solving the envelope equation in one dimension. This corresponds
to an incoherent space charge tune shift of |Avs.| = (2.45 — 2.333)/C33 = 0.1334 or
the incoherent tune of 2.45 — 0.1334 = 2.3167. The simulations were performed for
a beam with transverse Gaussian distribution. The results are plotted in Fig. 5.2 as
the fraction of particles inside a given betatron amplitude versus the incoherent tune
of the stationary beam of the same rms size. The incoherent tune is chosen because
it serves as a measure of the beam intensity. Larger incoherent tune implies lower
beam intensity. The thick curve in the center is the rms beam size. We clearly see
that it passes the incoherent tune of 7/3 with nothing happening. However, there is
a sharp threshold at the expected incoherent tune 2.3167. This verifies the fact that
it is the coherent tune but not the incoherent tune that determines the arrival of a
resonance. The horizontal curves in the figure represent the fraction of particles inside
a fixed emittance for the Gaussian distribution. They step downwards as particles are
driven to larger amplitudes. The stepdown occurs when a horizontal curve meets the
curve connecting the + symbols. These 4+ symbol represent the emittance at which the
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incoherent tune is on resonance. If we examine the figure more closely, we find that
only those horizontal curves representing more than 50% of particles step downwards,
and also the stepdowns are more appreciable only when the particle amplitude becomes
larger. This phenomenon happens because of some halo particles residing at the very
edge of the beam. They behave like a separate beam and feel the space charge force from
the core of the beam as an external force. Since this is not the space charge self-force of
the beam halo, our discussion of the irrelevance of the incoherent tune does not apply
to these particles.

5.4.2 Two Dimensions

Machida [8] performed two-dimensional space charge simulations of the SSC Low Energy
Booster by including quadrupole error forces. The horizontal bare tune was fixed at
Vo = 11.87 while the vertical bare tune vy, varied from 11.95 to 11.55. The maximum
incoherent tune shift was kept fixed at |Avg.,| = 0.33 with a half-integer stopband 0.02.
The beam simulated had a bi-Gaussian distribution. The threshold for emittance growth
was found to be roughly 11.63, when the incoherent tune had already passed the half-
integer resonance of 11.50. An incoherent tune shift of 0.33 for a bi-Gaussian distributed
beam is the same as an incoherent tune shift of 0.33/2=0.165 of an equivalent uniform
beam. According to Eq. (5.81), the incoherent tune shift of an equivalent uniform beam is
0.199, or 2 x 0.199 = 0.398 for a bi-Gaussian beam. If we include the stopband, meaning
that the half-integer resonance will start at 11.50 4+ 0.02 = 11.52, the incoherent tune
shift of an equivalent uniform beam is 0.1687, or 2 x 0.1687 = 0.337 for a bi-Gaussian
beam. The number is very close to the incoherent tune shift of the 0.33 input into the
simulations.

In other two-dimensional simulations, Machida and Tkegami [9] also demonstrated
that it was the coherent rather than the incoherent tune shifts that determine the
instability of a beam. Some results are illustrated in Fig. 5.3. In the simulations, the
horizontal coherent quadrupole tune hits the integer 13 when the beam intensity reaches
~ 15 A. We do see that the horizontal emittance increases rapidly around the beam
intensity of 15 A. The vertical coherent quadrupole tune hits the integer 11 when the
beam intensity is raised to around 13 to 15 A. Around those intensities, large increase
in vertical emittance is evident in the plots. However, we do not see any growth of
emittance when the coherent quadrupole tunes cross half integers. The simulations were
performed using beams with the water-bag distribution, the K-V distribution, and the
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parabolic distribution. As is seen in the plots, the results do not depend much on the

beam distribution.
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Figure 5.3: (color) Tune of coherent quadrupole mode (left) and rms emittance at
512 turns after injection (center and right) versus beam intensity. Upper figures

show results in the horizontal plane while lower ones show results in the vertical

plane. Rms emittance growth is observed when either the horizontal or vertical

coherent quadrupole tune crosses an integer. (Reproduced from Ref. [9]).

5.5 Application to Synchrotrons

Let us apply what we have learned to some low-energy synchrotrons. For the Fermilab
Booster with an injection energy of 400 MeV and round beam, the bare tunes derived
from the lattice are vy, = 6.70 and vy, = 6.80. The nearest half-integer is 6.5. Thus,
if the half-integer resonance arises from the incoherent motion of the beam particles,

the largest incoherent space charge tune shift allowed will be |Avg.,| = 0.20. If the

resonance comes from one of the coherent quadrupole envelope modes hitting the half-
integer, the largest incoherent space charge tune shift allowed becomes¥ |Av,. .| =0.296

TWe can also make the rough estimate of assuming the two betatron bare tunes are equal, i.e.,
Yoz ~ voy ~ 6.70. Then the incoherent space charge tune shift according to Eq. (5.82) is |Avgeq| ~
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or |Avg,| = 0.291. These numbers are obtained from the matrix of Eq. (5.80) by
substituting %I/ = 6.5 for the eigentune and solving for |Av,.,|. On the other hand, from
the experimentally measured beam size, the calculated incoherent space charge tune shift
is 0.40, which definitely exceeds the result from incoherent motion and agrees more or less
with the result from the coherent mode. So far the estimation has been based on uniform
distribution. If the distribution were bi-Gaussian, the largest incoherent space charge
tune shift allowed would become |Av,.;| =2%0.296=0.592 or |Av.,|=2x0.291=0.582
instead for particles at the center of the beam with small amplitude betatron oscillations.

Similar computations are performed for various low-energy synchrotrons, for which
the beams are mostly round and the distribution uniform. The results are tabulated in
Table 5.2. We see that for all the synchrotrons listed, the space charge tune shifts com-
puted from experimentally measured beam sizes exceed those derived from incoherent
particle motion and are close to those derived from the coherent modes.

Table 5.2: Estimated inocherent space charge tune shifts for various low-energy
synchrotrons. The incoherent space charge tune shifts are derived from the exper-
imentally measured beam size (3rd column), the assumption that the half-integer
resonance comes from the incoherent motion of the beam particles (4th column),
and the assumption that the half-integer resonance comes from a coherent envelope
mode (5th column). We see that the values from experiments exceed those from
incoherent motion and agree mostly with those from the coherent modes.

|Alseq|/|AVscy|
Synchrotron Bare tunes from from incoh | from coherent
Voz [ Voy experiment motion motion
KEK Booster 2.17/2.30 0.23 0.17 0.25/0.24
FNAL Booster | 6.70/6.80 0.40 0.20 0.30/0.29
ISIS 3.70/4.20 0.40 0.20 0.31/0.27
AGS 8.75/8.75 0.58 0.25 0.33/0.33
AGS Booster 4.80/8.75 0.50 0.30 0.46/0.25
CERN PS 6.22/6.22 0.27 0.22 0.29/0.29
CERN PS-2 6.22/6.28 0.36 0.22 0.31/0.31

|AVseq| ~ 3 x 0.2 =0.267.
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5.6 Exercises

5.1. Supply the missing steps in transforming the one-dimension envelope equation
from Eq. (5.30) to the normalized form of Eq. (5.54). You may need the definition
of the betatron function

BB By

5~ T B2K,(s)—1=0, (5.88)

where the prime denotes derivative with respect to s, the distance along the accel-
erator ring, and K,(s) is the focusing strength of the external quadrupoles.

5.2. Show that the incoherent space charge tune shift Av,., of a one-dimension beam
uniformly distributed in the x direction and infinite in the y and s directions is

given by
21roo R?

»prE
where the beam has extent between £+, o is the particle density per unit area in

2V0:cAVscw = (589)

the y-s plane, ry is the classical particle radius, v and 3 are the Lorentz parameters,
and R is the mean radius of the accelerator ring.

5.3. Verified the expression for (z&,) given by Eq. (5.48) by computing this quantity
for a round beam with (1) uniform distribution and (2) bi-Gaussian distribution.

5.4. Derive the incoherent space charge tune shifts for the various synchrotrons listed
in the last column of Table 5.2 when the intensity of the beam having uniform
distribution is increased so that the first coherent envelope mode reaches the half-
integer resonance.



Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

R. Baartman, Betatron Resonances with Space Charge, Proceedings of Int. Work-
shop on Emittance in Circular Accelerators Nov. 1994, KEK, Japan, KEK report
95-7, p.273; R. Baartman, Betatron Resonances with Space Charge, Proceedings
of Workshop on Space Charge Physics in High Intensity Hadron Rings, p.73, Ed.
Luccio, A.U., and Weng, W.T., (Shelter Island, New York, May 4-7, 1998).

W.T. Weng, Space Charge Effects — Tune Shifts and Resonances, AIP Conf. Pro-
ceedings 153 1987, p.43..

[.M. Kapchinsky and V.V. Vladimirsky, Limitations of Proton Beam Current in a
Strong Focusing Linenar Accelerator Associated with the Beam Space Charge, Proc.
Int. Conf. on High Energy Acc., CERN, 1959, p.274.

F. Sacherer, RMS Envelope Equations with Space Charge, IEEE Trans. Nucl. Sci.
NS-18, (PAC 1971) 1105 (1971). See also the longer report of the same title in
CERN-SI-Int.-DL/70-12, Nov., 1970.

P.M. Lapostolle, Possible Emittance Increase Through Filamentation due to Space
Charge, IEEE Trans. Nucl. Sci. NS-20, Pac’71, 1101 (1971).

T.P. Wangler, K.R. Crandall, R.S. Mills, and M. Reiser, Relation Between Field
Energy and RMS Emittance in Intense Particle Beams, Proc. Particle Accelerator
Conference 1985, Vancouver, BC, p.2196.

I. Hoffmann, Space Charge Dominated Beams Transport, CERN Accelerator School
for Advanced Accelerator Physics, Oxford, England, September 16027, 1985, p.327.

S. Machida, Space Charge Effects in Low Energy Proton Synchrotrons, Nucl. Inst.
Meth. A309, 43 (1991).

9-25



9-26 BIBLIOGRAPHY

[9] S. Machida and M. Ikegami, Simulation of Space Charge Effects in a Synchrotron,
Proceedings of Workshop on Space Charge Physics in High Intensity Hadron Rings,
p.73, Ed. Luccio, A.U., and Weng, W.T., (Shelter Island, New York, May 4-7, 1998).



