Circuit Model Wakefield Computations. Progress Report
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Establish alocal capability to compute wakefields

Improve the efficiency of the computation to allow studies involving

an entirelinac ( 103) structures.

Understand the impact of various construction errors (frequency &
transverse alignment)

Do acomparative study of RDDS and MDS
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Numerical Computations

Discretization

F(r,a;)
QAHJ Qs.v

M_ a; F;(r)
M_ a;G;(r)

Substitute in differential equation or equivalent weak integral form and
solvefor o;.
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Circuit Approximation

e The FEM corresponds to a particular choice where F; and GG; are
piecewise continuous interpolation polynomials with localized
support. The system of equationsistypically very large and very
Sparse.

For the Equivalent Circuit Model the approximation basis
corresponds to modes of individual cells. Since the transverse beam
offset issmall, only lowest order modes need be included (TM 110,
TE111). Instead of dealing with the mode amplitudes directly, the
|atter are scaled in such away that the electric and magnetic energy
associated with a given mode can be obtained from pseudo voltages
and currents.
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Deter mination of the Circuit Parameters

The circuit equations can be solved analytically in the periodic case. The
solution is expressed in the form of a dispersion relation which depends

on the circuit parameters. The latter can be obtained by fitting to a
corresponding dispersion relation obtained from a full 3D numerical

solution. This calculation involves asingle cell, with appropriate Floquet
boundary conditions.
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Solve in the frequency domain (2nd order equations).
Loop equations for individual cells (| is unknown)

Nodal equations for the manifold ( V is unknown)

Solve a deterministic system over arange of frequencies (2000
samples) (Spectral Function Method)

From the value of |, compute V for each cell
Using V, compute the sum wake

Invert the Spectral Function (sine transform)
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4 Observations -

The sparsity structure of the system remains the same for each of the
2000 freguency steps.

The solution at step n-1 may provide a good estimate for step n

matrix is complex symmetric (reciprocity)

When manifold voltage is not eliminated, matrix is block tridiagonal
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Sparse Linear Equation Systems

e Standard LU factorizationis O(IN?).
e Storage Requirements O(IN?).

The computational efficiency of sparse solversisduein part to the fact
that they eliminate vacuous operations. Note that these operations can in
principle be avoided in a dense solver with asimple test. The BLAS
package usually performs such tests.
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|terative Methods for Sparse Linear Equation Systems

e (uadratic form involving theresdua Ax — b.
e minimize the quadratic form using a Krylov method

e To improve efficiency, precondition (transform) the system prior to
minimization step. Note: the preconditioning matrix should be
sparse. |ncomplete Factorization is a popular choice, but by no
means the only possible one.
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Direct Methods for Sparse Linear Equation Systems

Based on Gaussian elimination
Standard (LU) factorization favors maximum numerical stability

With adifferent ordering of the elimination, one can minimizefill-in
and greatly improve efficiency

Many strategies available to find a more optimal ordering. Simple
strategy: minimize fill-in at every step.




JF Ostiguy - Circuit Model Wakefield Computations

|terative vs Direct Solvers

e Testswith various iterative methods were performed. Results with
QMR and incompl ete factorization were somewhat disappointing,
comparable to LAPACK/BLAS. Efficiency greatly depends on the
preconditioner. The solution for previous step can be used asa
starting point. It may also be possible to reuse the preconditioning
matrix for afew frequency steps.

Tests with adirect sparse solver based on an optimized ordering
strategy proved more encouraging. Although finding the optimal
ordering is computationally expensive,

thisneedsto be done only once.

e Although we have not completely given up on iterative solvers, the
performance provided by an optimized ordering direct solver proved
to be satisfactory for our needs.
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RDDS1 Matrix, manifold voltage not explicitly eliminated. N = 618
no explicit inverse used to obtain the cell voltage

Pentium |11 550MHz GNU compiler

Total Cpu time: 12.05 seconds

Matrix assembly represents approximately 60% of this figure.
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4 L oose Ends -

e Boundary Conditions
— “open’ : ag = a1, ag = —a; (currently in use)

— “shorted”: ag = ag, a9 =0

e Manifold below cutoff frequency

— The manifold section phase advance involves a cutoff term of the
form /(1 — F./f) Attention must be paid to the interpretation of
thisteemwhen f < fe. f variesfrom 14.0t0 16.5 GHz. F. is
dightly larger that 14 GHz in the last few cdlls.
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