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“Abstract

The code Orbit has been designed for PIC tracking of a particle
beam in a high intensity circular hadron accelerator. In the code,
space charge forces are continuously calculated and applied to
the individual macroparticles of the herd as transverse momem-
tum Kicks. Some of the general structure of a recent version of
Orbit developed at Brookhaven is described. Problems of this
type of calculation and solutions are discussed.



PIC Tracking

a particle is represented by a phase space vector

7 = (z, Pz, Y, Py, ¢, Ap/p)

A “herd” is pushed through a lattice represented by maps (ex-
ternal fields)

At 'space charge nodes’ in the lattice, (internal) forces are cal-
culated and applied to the macros as momentum Kkicks.



Poisson Equation
To calculate space Eharge Kicks:
e bin the heard on a grid according to (z,y,cAt), find p
e bin the herd according to (pz,py, Ap/p), find 7,

e Solve partial elliptic differential equations
VQQ)(P) — _r(Q)
> 7 @ (9P

V<A(P) = e

Find scalar electric © and the magnetic vector potential A

e For long bunches in synchrotrons, beam current is parallel to
walls, Electric repulsion and magnetic attraction partially com-
pensate: only use & (multiplied by a factor 1/42)



Viasov or Split Operator

)

e Giobal approach: Viasov Equation:

Rigorous in principle, but difficult in practice to study beam gran-
ularity (halo formation)

e Split Operator technique:

Independent treatment of motion through maps and space charge
kicks: macros are propagated in a machine element trough maps,
and then subjected to momentum kicks

“Leapfrog” procedure as done in symplectic integration.

Orbit uses Split Operator



The Independent Variable

The independent variable to clock propagation can be time ¢ or
longitudinal coordinate s

e Time is attractive: solve Poisson Equation with all the macros
at the same time

e Space is convenient in periodic accelerators: particles cyclically
pass through the same positions in the lattice

Apply relativistic transformations between space and time.

Orbit uses space as the independent variable and maps from
MAD |



3D Treatment of Space Charge

Transverse grid is terminated at wall boundary, longitudinal grid
covers the length of the beam bunch

Long bunches: unpractical to make z grid step as small as the
transverse. In practice this is not necessary because:

e z space charge distribution varies smoothly along the beam
e z motion within the beam is much slower than the transverse

Cut the beam in z slices, long enough that the average den-
sity and the transverse aspect ratio of the slice, and the wall
configuration around the slice can be considered constant

p(2,y,2) = py (w.) py(2).

Only solve the 2D transverse Poisson problem simultaneously
in each slice, best by parallel computing



Frozen Be n
e L attice map sequence controls the propagation.

e Poisson problem must be solved with all macros at the same
time tgo

e At a SC node, beam profile must be reconstituted.
Figure

A first herd chosen on the contour of z and y phase 5pace ellipses
matched to the (bare) lattice.

The trajectories of these macros are all bounded by the envelope
w = y/€f.

Macros in the second group are aiso matched and extracted on
a Gaussian distribution with the previous ellipses as their r.m.s.



Beam freezing in Orbit is as follows.

e The herd “reaches” a SC node at sgg when the synchronous
particle reaches SC.

e We know in which lattice element each macro will be or was
at tso.

¢ We can reconstruct the transfer matrix between s and sgo to
reconstitute the beam, since Twiss functions at s in that element
are known from the integral of the equation

1 1
88" - 16’2 + K% =0,
Figure

3D rendition of a frozen beam in a simple FODQ lattice.



Beam longitudinal slices
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Table 1: Specifications for the BNL Galaxy Cluster[1].

Nodes: 2 CPU’s 512 MB RAM
CPU specs: Intel Pentium III

500 MHz 512 kB L2 Cache

Interconnection:  Cisco Switch 100 MB Ethernet
File System: INES

MPI: mpich 1.2 compliant

Table 2: Results of Poisson solvers. Two grid sizes

Grid:

FFT

Lu Solver

BruteForce

BF/FFT/LU
33/65/33 65/129/65
Elapsed Time [s]

0.0279 0.1407
0.0538 0.2558
0.1343 2.1300

Table 3: Orbit timing (wall clock) on the Galaxy. 1 Turn.

With SC No SC

Nodes Macros/Turn time time
per Node sec sec

2 1.6 10° 1934 818

9 0.2 10° 253 - 85
17 0.1 10° 142 42
33 0.05 10° g8 23

g I{?mﬂ




. Iterative

The discretized Poisson's can be solved by iteration. From

P14+ ¢i,j+1 T Pip1,+Pij—1— 4P,
h2

Pij =
obtain

1
0d =7 (Pim1g F Pijp1 + Pipr+ Pij1 - pig)

Solve by iteration, starting with a guess. At iteration k it is

b

k+1 1 k
d’i,j —4( i— LJ""CDJerl'i'q)?»-l-la'l'cb _“p"':j)‘

Since the beam density evolves slowly from one space charge
node to the next, iterative techniques show rapid convergence.



Limitations of this procedure are that maps used to put macros
in their appropriate place are for the bare lattice, and not for
a self-consistent lattice mcludlng extra focusmg and tune shift
due to SC forces.

Consistent with split operator

In Orbit each slice is comparable in length (equal to or a fraction
of) to the length of a machine element.

A slice is surrounded by a given wall configuratidn. The geométry
of the surrounding is stored together with the the transfer maps
to completely characterize a machine element.

A similar approach is been used by L.G.Vorobiev et al at Michigan
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Poisson Sol s
Two basic approaches to find <:

e Differential Poisson (already shown). and

e Integral Poisson:

oP) = 5 [*Pag

P = field point, @ = source point. Green function = the inverse
of the distance r = |P — Q|

In r we introduce a smoothing parameter to avoid poles that
may derive from P coinciding with Q.

In the integral formulation the image charge is part of the input
-making it more elaborate to include walls in the calculation-

Conversely, in a differential formulation the image is part of the
answer



Integral Poisson Solvers

e Brute Force: direct integration.

Method is very transparent. Needs a smoothing parameter.
Slow. Good as a check.

e FFT: The integral is reduced to a convolution



Differential Poisson Solvers

e Poisson including boundary condition on the walls
2 — _p(P)
V<o (P) = -5
Q)(waall) =0
There are two distinct classes of numerical algorithms to invert
the Laplacian, that makes use of
e finite differences: for simple grids say Cartesian

e finite elements: adaptive grids -say triangular

Orbit uses finite differences



2-D LU Decomposition
Express the Laplacian operator V2 in discrete form on aMxN

grid that extends to wall

-—47rpm = ﬁ lCDk.l

e Solution

>(P) = —f;c‘lp(cz)

Second partial derivative (in z, and similarly in y)

92d 1 .
557 = 72 (Pim1y = 2P0+ Diyy ;)

yields a Laplacian (band-sparse) matrix (4 is Kronecker's)

cgj,f = —45Fs% + oF 10 Lok 185 + ool ir1 +oreh_y

Its inverse is not sparse



»

Successive Over Relaxation
basic SOR was most efficient for small grids (N < 128)

¢ SOR with Chebychev acceleration was most efficient for large
grids (N < 128). Very dense grids (say, 256 X 256) are practical.

e Conjugate Gradient showed the most rapid convergence,
however, the basic algorithm requires more operations

e Multigrid methods techniques have the potential of solving
systems in N iterations.



Walls —Eﬂ:ects of image charge and current
o. Include boqndary conditions in Poisson Solvers, or
e In a synthetic way use impedances, or
e Find an electrical circuit analog to the beam-wall interaction.
e Walls are naturally introduced in differential Poisson Soivers,

e Finding images 'is important' as a check,' since the balance of
charges (real plus image) must be satisfied.

For a perfect conductive walls, the sum of the image charges
must be numerically equal to the sum of the beam charges.



3

Figure for perfectly conducting walis

Walls are represented by N blue dots. The interior by M red
dots

The system of equations is exactly determined.

e N + M known quantities: & = 0 at the N blue points, p at
the M red points

e M+ N un-knowns: M to be calculated as ¢ at the red points,
Pimage @t the N blue points
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Space Charge Moméntum Kick

Space charge electric field: E = V¢, Force: F(P) = %ﬁcgﬁ

e Momentum kick on each macro: £F =

A0 =1y Fat

e~

In a Split Operator sense: dt = At = L/fc

e Transverse kick - L separation between transverse SC kicks

P or

e Longitudinal (energy) kick - Ly separation between longitudinal
SC kicks

SAE ., 04
— = — T
5 Pegh
. —_ 47r)\qh'r0
perveance: p = 7150

Al longit. charge per unit iength, Axz: size of a grid cell (square)



Comparison of Solvers in the Transverse Space-1

e Space Charge field shape calculated with two integral Poisson
solvers, i.e. Brute Force and FFT and with a SOR differential
solver.

Walls were moved far away, since the two integral methods did
not allow their inclusion. For all three cases a gaussian random

beam distribution entirely contained in a 64 x 64 Cartesian grid
was used.

The figure clearly shows that the agreement between BF and
SOR is good, while the force calculated with FFT vanishes at
the edge of the space occupied by the beam, but is in good
agreement with the other two methods.
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Comparison of Solvers in th  Transverse Space-3

e Image charge distribution on the walls
The distribution on the left and botton walls are not identical
because the beam is not circular in section.

The integrated image charge is equal to the beam charge, as it
should for perfecting conducting walls that don’'t allow any leaks
of the field to the outer world. |

e Reference simple case:

Cylindrical symmetric beam in a cylindrical conducting pipe of
radius b. Beam is displaced from the center of the pipe by £ in
the direction z. The electric field produced by the image charge
at the center of the beam is

_ _PL 1
2meq (b2/€) — €

with py the beam charge per unit length.

Eq

(1)



Comparison of Solvers in the Transverse Space-4.

e Charge distribution, potential and one component of the field
for a beam offset in z and y in a square conductive chamber.

Grid of 512 x 512.

Potential goes to zero at the walls, and the field converges at
the wall to a finite value numerically equal to the image charge
density there
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Longitudinal Potential in a Frozen Beam-1

The longitudinal potential gradient is calculated as a function of
(z,y), as the difference of potential between analogous points
in the median tranSv_erse plane of successive slices. Actu'ally, we
use three slices, say: 1, 2, 3, in a leap-frog fashion

8¢ 1

a(x’y)Q ~ QLSlice [¢3 T ¢1] (w’ y),

with Lg,.. is a length of a slice.

A longitudinal SC energy kick is traditionally calculated as
!

A b
(AE)ge ZOQ—fYQ 14+2In—+ f(r)

a
with X' the longitudinal gradient of the beam charge, b and « the
radius of the accelerating chamber and of the beam, respectively,

and f some function of the transverse charge distribution.
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Longitudinal Potential in a Frozen Beam-2

e The advantage of the frozen-sliced beam approach is evident.
With this method the longitudinal kick is calcuiated directly from
the configuration of the beam and of the surrounding vacuum
- walls, that doesn’need necessarily to be a round-pipe.'





