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Outline

• Coherent Space Charge Tune Shift
– Analytical Approach
– Coupled Mode Coefficient

• Lattice Driven Resonances (2D)
– Half-Integer Resonance (SNS)

• Space Charge Driven Resonances



Require systematic approach   

1. For the GSI project of a large synchrotron SIS100 as driver for 
radioactive ions and antiprotons we need to keep loss <1% (~1 sec)  -
main problem seems wall desorption (104 ions per incident heavy ion) 

1. 3 kinds of space charge effects:
• tune spread/shift    -> „frozen-in“ space charge for up to ~105  

turns (talk by G. Franchetti)
• sc as source of nonlinearity 
• coherent dynamical effect  -> self-consistent space charge 

calculation for ~103  turns - compare with theory (this talk);
applies to coasting beam or ideal barrier bucket

Hofmann, Beckert, 1984
Machida, 1991 ->
Baartman, 1998
Venturini, Gluckstern, 2000
Burov, 2001
Fedotov, Hofmann, 2002



Transverse Space Charge Modes

Eigen modes of transverse 
density oscillations

Coherent motion induces
additional shift 

-> needs selfconsistent 
(kinetic) calculation

2 envelope modes 
(breathing and quadrupolar)

normal

Normal octupole or 
Space charge of WB beam

skewed



Derived dispersion relation from Vlasov-Poisson equation for l = 2, 3, 4 

Hofmann., Phys. Rev. E 57 (1998)

The coherent frequency σ=ω/νx must be solved in 3-dimensional parameter space: 
α=νy/νx, η=a/b, σp=ωp/νx with ωp

2=q2N/(ε0πmγ3 ab)

Example:
l=3, even

Im σ>0: 
many resonant 
instabilities



Recently resolved confusion about KV and non-KV modes & instabilities

„Gluckstern modes“ in symmetric beams known as KV artifact
• Anisotropic: we claimed some modes are „real“ (non-oscillatory) – not unambiguous
• Others emphasise highest frequency branches („fluid modes“ by Lund&Davidson“)

Key is „coherent coupled mode coefficient“ , generalizing Baartman‘s definition for
symmetric beams to unsymmetric/anisotropic beams:

ω= mνz+lνx +∆ω=n

Cmlk=(mν0z+lν0x-ω)/(m∆νz+l∆νx)
gives full coherent shift versus  „incoherent coupled mode shift“

C202 (envelope)=0.75 -> 33%  „intensity gain“

new finding: C>1 (shift past incoherent) are KV-specific „negative energy modes“ 
leading to „Gluckstern“ instabilities  - need to be discarded

C<1 are positive energy modes of realistic beams -> anisotropy instabilities for C=1
-> most low-frequency branches also realistic (kinetic – not fluid)



Example: 
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Examples for highest
frequency branches:

2nd order: C20= 0.65

3rd order: C30 = 0.77

4th order: C40 = 0.88

trend: approaching 1

C > 1



Applied to SNS ring: essentials from envelope equation  
2nd order even mode resonance: 2νh +∆ω=9

driven by gradient error near (fictitious) working point 4.5
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• coherent shift of resonance 
• different for breathing and  

quadrupolar mode
• envelope response limited

due to de-tuning

Fedotov, Hofmann, PRSTAB 2002



100 turns

next: applied ORBIT code to SNS lattice

N=9.7  on coherent resonance

single particle footprints (1st turn)
for initial coasting KV beam

Found clear intensity gain due to the coherent shift of the 2nd order
(systematic) resonance 2νv+∆ω=12  (4 super periods)

N=6.6  no growth
N=7.3  no growth

bare tune

intensity gain basically maintained for injection into bucket (< 1 synchrotron period)



Consistent with theoretical shift

2νv+∆ω=12

12.0

12.4

5.7 5.8 5.9 6.0 6.1 6.2
ν0=6.23/6.20; emittance ratio=1

2νh +∆ω=12

2 =12νh

ν +νh v

νv

2νv2νv +∆ω=12

linear
coupling



Check 4th order:

fourth order resonances much 
closer to 2νv=12:
4νv+∆ω=24

and:
2νv+∆ω=12

does this take away „coherent 
advantage“?

first tests turning on fringe
field octupoles in SNS: no

but: higher order might show
up >> 1ms

need careful study!
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Higher order space charge driven resonances in linear lattice
- which ones exist? -

„Montague“ resonance:
2νv- 2νh+ ∆ω=0

expect also:
2νv+ 2νh+ ∆ω=nxN

studied by Machida et al.

-0.4

0

0.4

0.8

0 0.5 1 1.5 2 2.5

εx

εz

νz/νx

∆
ε/

ε
data taken from scan over stopband

using 2D PIC simulations for intitial waterbag:
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But: also find resonant growth 
(exponential) in third order due to 
space charge  - we claim not only 

even sc-resonances matter! 
Found 2νh+ νv+ ∆ω3=12 in pure 

linear lattice!



In Linacs same stopband responsible for emittance exchange

Montague, 1968
Hofmann, Boine-Frankenheim, PRL2001)
Sakai et al. PAC01„Montague resonance“
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2d self-consistent PIC simulations for SIS18 lattice
(FODO with 12 super-periods)

using initial waterbag in 2D coasting beam/ 50.000 particles PIC

ν0v =4.05

νv

3 „4νv=12“

ν0h4 4.85



Found modes growing from noise = exponential instabilities

2νv+ ∆ω2=12/2
envelope instability with σ0 > 900

completely absent without space charge
Hofmann, Laslett, Smith, Haber, 1983

fourth order:
4νv+ ∆ω4=12

2νv+ ∆ω4=12/2
C~0.88 is in good

agreement with theory

• coherent shift of resonance 
• emittance growth limited

due to sc de-tuning
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Maximum radius 

• Rms emittance growth 
limited due to detuning

• Halo larger where less rms 
emittance growth
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Conclusions

1. Coherent resonance crossing & shift in second order 
• favourable coherent tune shift for ~ coasting beam (SNS)

2. For higher order modes found selection rule to discard „KV-modes“ (Cmlk >1)
• coherent shift smaller in fourth order   

3. Also found systematic sc driven instabilities mνh+ lνv+ ∆ω=N/2 in all orders
4. Pronounced self-limiting (de-tuning) effect of space charge in nonlinear       

(> 2nd order) resonance 
• suggests quite small resonance loss in 2D coasting beam or ideal

barrier bucket -> significant resonance advantage of barrier bucket
5. Require „sufficiently fast“ synchrotron motion to explain observed losses in 

synchrotrons
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