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Overview

~« Required acceptance set by Laslett Tune Shift -0.2 at injection

— tracking includes only single-particle effects, but required beam size is
determined by collective effects

* Beam tracking done with with the program TEAPOT
- No space-charge, but magnet field errors, position and rotation errors
— Correctors included: steering magnets, chromaticity sextupoles.

— In every run the closed orbit is corrected using the existing BPMs and
steering magnets, then the tunes are set to nominal values by resettmg all
quadrupoles (no local quadrupole trims)

» Three rings studied: Booster and two versions of the main ring
— All rings studied at injection energy o |
~ 4 GeV Booster is nine-sided standard (BQL)

— 50 GeV Conventional main ring has periodicity four (R19)
— Transition-less ring has periodicity three (125)

e Error multipoles used in tracking
— Dipole errors from Mi dipoles (scaled to the larger aperture for the booster)
— Quadrupole errors from MiI quadrupoles or from new requim’ents
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Tracking with TEAPOT

NISA

Developed by R. Talman (Cornell) and L. Sc_haohinger (Berkeley)

Classic UNIX FORTRAN version as used at SSC
— But many improvements since then, including some local ones

Exact physics
— Hamiltonian-based (canonical variables)
— Symplectic integration (no spurious emittance growth)
— Closed-orbit and alignment errors treated exactly (no truncation)
- 6-D tracking, including synchrotron oscillations

Powerful, MAD-like front end

- Uses the same input language as design codes
- Simplifies setting up correctors, BPMs

Problems
— No space-charge forces in standard version

— Slow (needed fastest UNIX workstations in the past, now also PCs with
LINUX) A,

» Los Alamos
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4 GeV Booster Layout (see talk by P. Schwandt)
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Two 50 GeV Main Ring Designs under Study

Conventional 4-sided and Transitionless 3-sided
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4 GeV Booster Lattlce Functlons for one Cell
(1/9 of Ring)
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4 GeV Booster Tune Diagram

Structural resonances are in
color

The only structural
resonance near the
operating point is

2vy—vx==0




Conventional 4-sided Rlng Lattice Functlons for 1/4
of the Ring
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Conventional 4-sided Ring Arc Cell

Dipoles are blue

Quadrupoles are red




Conventional 4-sided Lattice Tune Diagram

Structural resonances are in
color
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Transition-Less 3-sided Lattice Functions (Arc Cell)

125 Cell
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Transition-Less 3-sided Ring Arc Cell

Dipoles are blue

Quadrupoles are red
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" Transition-Less 3-sided Latt|ce Functlons
(1/3 of the Rlng)

E
g 27
@
o
1]
2
".E“ 4
a oF
.24
T 7 v 1 LA B T | I A B T
100 200 300 400 500
qx_ 8.4733 qy= 746 sqri(beta_x) path length = 585.8
Gamma-T = -26.01785 — :g;t(:eta_y)

] AL
Eﬁ{,"&l NISH




Transition-less '3-sided Lattice Tune Diagram

Structural resonances are in
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MI Dipole Error Multipoles at injection
1 part in 10%at 1 inch (used for all three rings)

Harmonic Normal = Skew Normal Skew
Number Systematic Systematic Random Random
1 0.737 - 10.251 -

2 0.06 - 0.8 -

3 -0.6 0 0.18 0.12

q 004 0.03 0.06 0.03

5 033 o 0.05 - 0.05

6 -0.01 -0.03 0.05 - 0.04

7 -0.03 0 0.05 0.05
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Original Ml Quadrupole Error Multipoles at injection - 1 part in
104 at 1 inch (used for 50 GeV ring and scaled for 4 GeV)

Harmonic Normal Skew Normal Skew
Number Systematic Systematic Random Random
2 - - 24 -
3 -0.51 1.08 2.73 1.85
4 1 -2.05 1.02 2.38
5 0.03 -0.75 1.12 0.47
6 -1.49 043 - 0.63 ~ 0.70
7 0.21 - 064 044
8 1.14 - 0.64 -
9 -0.19 -0.07 0.12
10 -0.77 -0.12 0.06
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New AHF Quadrupole Error Multipole at injection - 1 part in
“10%at 1 inch (used for 50 GeV ring and scaled for 4 GeV)

Harmonic  Normal Skew -  Normal = Skew
Number Systematic Systematic Random Random
2 0 - 12 -
3 0.2 0.3 1 1
4 -0.5 0.1 1 0.3
| 5. -0.1 | | -0.1 0.15 | - 0.1
6 04 -0.1 0.1 0.1
9 - - - -
10 - - - -




Both Main Ring Dynamic Apertures at 4 GeV (Ml Quad errors)
Conventional 4-sided in blue - Transitionless 3-sided in red

Using FNAL MI quadrupoles the

L - : - : : dynamic aperture is barely
sufficient
100- 123
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Both Main Ring Dynamic Apertures at 4 GeV with New Errors
Conventional 4-sided in blue - Transitionless 3-sided in red

n~-mm-mrad

= sgN.

€N

Physical Aperture

Nomine]l Beam Size

dp/p. X 10-4

The dynamic aperture is
comfortably larger than the
physical aperture

Chromaticity corrected to -6 for
both rings




4 GeV Booster Dynamic Aperture at 140 MeV with Ml Errors

6 in Quads shown in blue - 8 in Quads shown inred

Quadrupoles error multipoles
scaled from FNAL MI
quadrupoles

Shown are the results for two
different quadrupole diameters

Insufficient dynamical aperture
in the 6” case

v=-mm-mrad

exN = egN-

{ Physical Apert )
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Scaling Multipole Errors

e When comparing magnets of different apertures the errors are
assumed to be the same at a radius proportional to the magnet size

e The error multipole at different radii are related as
. b,(R) = (R/r)™1) by(r)

- Here bm(R) and b, (r) are the errors as a fraction of the main field at
R and r and m is the harmonic number.

®  For quadrupoles the relation is
. by(R) = (R/F)™2 by(r)

— Because the scalmg is with respect to the quadrupole field at the
same radnus
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4 GeV Booster Dynamic Aperture at 140 MeV with New Errors
6 in Quads shown in blue - 8 in Quads shown in red

Quadrupoles error multipoles
300 : S - T scaled from AHF main ring
quadrupole error requirements

Shown are the results for two
different quadrupoles diameters

Dynamic apertures seems
dominated by dipoles (not
much different for larger
quadrupoles)

w-mm-mrad

100 s | The dynamic apertures is much
larger than the physical
aperture |
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Space-Charge Studies

The studies presented do not include the effect of space-charge

Space-charge effects are important
— At injection and parabola in the booster
— During accumulation in the main ring (1000000 turns at tune shift of ~0.2)

Preliminary studies use the code Simpson (from S. Machida)
— Simpson is based on TEAPOT
— Simpson includes the effect from magnet errors, correctors and space-charge
— Both 2D and 3D versions exist
— 3D version not extensively tested
— 3D version can do acceleration

One Million turn runs now possible (see next slide)
— Only 2D model used
— 3D version only used for booster for now, but results are encouraging

P

Alamos

e



SIMPSONS-20D AHF MR 'me-rel’ 500 Macroparticles
' 30 Jan 2002 '

V-emitlance

no particle loss was observed

Million-Turn Simulation of Conventional 50 GeV Main Ring

at injection -
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3D Simulation of 4 GeV Booster at injection |nclud|ng
beginning of parabola emittance growth

SIMPSONS-SD AHF Booster b005t9g 20k MP, 040 A

Acceleration 25 Mar 2002
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3D Simulation of 4 GeV Booster at injection including
beginning of parabola - phase-space

Turn 7800 Number Surviving = 15041
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See Dave Johnson’s talk!
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Conclusions
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* The two main ring designs have comparable transverse acceptances

— Final choice between them depends on longitudinal phase-space and cost
considerations |

 FMI Dipoles give a sufficient dynamic aperture
« Need smaller error multipoles than in FNAL Main Injector quads

* Booster needs better field than scaled from Ml
— Same conclusion as for the main ring

- New requirements on quadrupole errors give sufficient dynamic aperture
— Same conclusions for booster (when errors are scaled appropriately)
— Magnets can be built to meet the requirements (see M Schulze talk)
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