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Outline 

● Principal e-cloud effects
◆ Two-stream e-p instability
◆ Interference with some beam diagnostics in the ring and extraction 

line
● Basic features of the e-p instability at PSR
● Observations of electron cloud at PSR

◆ Diagnostics for measuring electrons
◆ Key observations
◆ Estimates of electron neutralization of the beam

● Tests of Potential Cures
◆ Suppression of electron generation
◆ Various methods for increased Landau damping
◆ Inductive Inserts

● Conclusions
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Well Established ep Instability Characteristics at PSR

● Growth time ~ 75 µs or ~200 
turns

● High frequency ~ 70 – 200 MHz
● Controlled primarily by rf 

buncher voltage
● Requires electron neutralization 

of ~ 1% (from centroid model)

BPM ∆V signal

CM42 (4.2 µC)
(Circulating Beam
Current)
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Turn-by-turn vertical oscillations compared with 
beam profile during evolution of unstable motion

● Vertical difference signals 
(blue) from a short 
stripline BPM and beam 
pulses from a wall current 
monitor (red).

◆ WM41VD.4B
◆ WC41.4B
◆ Data taken Apr. 14, 1997
◆ Data at t, t+115 µs, t+230 

µs, t+345 µs
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Bk70,  p16
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Simplified centroid model is our working picture for e-p 

● Rigid, uniform coasting beam, centroid model of coupled e and p dipole 
oscillations with linear motion near threshold*

● Some Features
◆ Unstable modes (n-Qβ) close to Qe (ratio of electron bounce frequency to ω0)
◆ Ratio of e/p amplitudes large for unstable motion
◆ Threshold condition with Landau damping can explain threshold curves vs 

buncher voltage assuming ~ constant fe ≈ 1% and ∆Qe/Qe ≈10%
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Frequency spectra of unstable motion agrees with model
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Electron Cloud Diagnostics

● Biased collection plates
◆ Provided some evidence for large numbers of electrons just 

before beam went unstable
◆ Slow because of filtering to suppress induced signals from the 

beam
◆ Perturbs the beam wall environment
◆ Only device we have for measuring electrons in magnets

● Retarding Field Analyzer (RFA) developed at ANL measures 
electron flux striking the wall with minimal perturbation of the 
beam wall environment and can provide energy spectra and 
time structure

● Electron sweeper developed at PSR to measure electrons 
remaining in the pipe
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Electron signals from RFA in straight section 4
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● RFA signal has contributions from “trailing edge multipactor” and “captured 
electrons” released at end of beam pulse plus their secondaries

● Key issue is how many electrons survive the gap to be captured by the beam
Signals averaged for 32 beam macropulses, ~ 8 µC/pulse beam intensity, device is labeled ED42Y, 
Transimpedance = 3.5 kΩ, opening ~1 cm2

Bk95,  p6-12
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Motion of “captured” electrons

Electron radial position (mm) vs time (ns)

● Captured electrons are the 
ones that drive the e-p
instability

◆ Oscillate against the beam 
during the entire passage of 
the beam pulse (~40 oscillation 
periods)

◆ Confined to the beam region 
for almost all of the beam pulse

● Released at the end of the 
beam pulse with energy that 
depends on initial conditions 
and pulse shape but can reach 
~ 100 eV and produce 
secondary electrons

Beam Pulse
8 µC/pulse

Electrons initially at zero velocity in the gap 
before arrival of the beam pulse

Bk 95,  p 38
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Mechanism  #2:  “trailing edge” multipactor

Electron born at 
wall from say losses

WC41

E-Detector x 4

Beam

Energy gain in one traversal
is high enough for multiplicationEnergy gain is possible in wall-to-wall 

traversals on trailing part of beam pulse

Bk87,  p111
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Electron energy cumulative spectrum (3D profile)

Bk 95,  p 6-12
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Electron signals in a single pass experiment

  6.8 µC beam pulse in the extraction line 
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● Electron signal is very similar to signals in the ring wrt e-flux, time structure, 
energy spectra and dependence on beam intensity

Bk 96, p 16
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Electron Sweeping diagnostic
● Designed by A. Browman to measure e-cloud surviving passage of the gap
● Short HV (~1kV) pulse is applied to electrode to sweep electrons into RFA

Cross-section

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 0.05 0.06

X (meters)

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

Y 
(m

et
er

s)

Acceptance of New Detector-α=75°
(Particles inside blue lines hit detector region-V=-100 volts)

Detector
(V=0)

Pipe
(V=0)

Plate
(V=-100)

Accepted fractional area=0.296

Collection Region



4/10/2002 RJM_ICFA_ECE at PSR.ppt14

Sample Electron Data from Electron Sweeper
● Signals have been timed 

correctly to the beam pulse 

● “Prompt” electrons strike 
the wall peak at the end of 
the beam pulse.  
Contributions from:

◆ Trailing edge multipactor
◆ Captured electrons released 

at end of beam pulse

● Device basically acts a large 
area RFA until HV pulse 
applied

● ~10 ns transit time delay 
between HV pulse and swept 
electron signal is expected

● “Swept” electron signal is 
narrow (~10 ns) with a tail 
that is not completely 
understood

Beam Pulse

HV pulse

Prompt Electron Signal
Bk 98, p 51

Swept electron signal

7.7 µC/pulse, bunch length = 280 ns, 30 ns injection notch, signals averaged for 32 macropulses,
repeller = - 25V, HV pulse = 500V

Bk 98, p 51



4/10/2002 RJM_ICFA_ECE at PSR.ppt15

Swept Electrons in pipe vs time after end of beam 
pulse

● Early results from electron sweeper 
for 5µC/pulse looking just after 
extraction

● Peak signal or integral have 
essentially the same shape curve

● Long exponential tail seen with ~170 
ns decay time

● Still see electrons after 1 µs
● Implies a high secondary yield 

(reflectivity) for low energy electrons 
(2-5 eV)

● Implies neutralization lower limit of 
~1.5% based on swept electrons 
signal at the end of the ~100ns gap
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Prompt and Swept Electrons vs Beam Intensity

● The saturation of swept 
electrons above 5 µC/pulse is 
not restricted to variations of 
beam intensity but includes 
other variables that affect the 
prompt signal such as:

◆ Variation in beam loss
◆ Bursts
◆ Changes in pulse shape

● Saturation explains several 
puzzles:

◆ Why instability threshold is 
unchanged by increases in 
losses or vacuum pressure

◆ Why the threshold intensity 
curves vs buncher voltage do 
not plateau at some intensity

1 2 3 4 5 6 7 8 9 10
0.01

0.1

1

10

100 (fixed buncher voltage and accumulation time)

E-sweeper ES42Y 10/07/01

(7E-5)*Q6.74 (3.2E-8)*Q10.27Swept Prompt

Si
g(

V)

Q(µC)

Bk 98,  p 132-3
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“Saturated” Swept and Prompt e’s vs local losses

Averaged (16 macro pulses) ES41Y signals for three different bumps and local losses

Prompt e signals

Swept e signals

Loss Signals (LM59) for the three bumps (0, +2, +4 mm in section 4)

Bk 98,  p 142-3
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Present picture of electron cloud in PSR
● Electrons captured by the beam pulse from the “cold” electron cloud 

surviving the gap oscillate against the protons within the confines of 
the beam and drive the instability

◆ Emerge at the end of the beam pulse with significant energy and 
contribute to the “prompt” signal

● Multipacting electrons from trailing edge multipactor strike the wall 
and produce much of the “prompt” signal observed in an RFA or 
e-sweeping detector

◆ Wall to wall trajectories
◆ Short dwell time, don’t drive the instability directly
◆ These feed secondaries to the low energy cloud that lingers in the gap

● Low energy cloud (gap electrons) that lingers in the gap but dies 
away in time with an exponential tail

◆ Created by secondary emission at the end of the pulse but not accelerated 
by the proton beam

◆ Cloud expands from space charge but partially replenished by 
“scattering” back from the wall

◆ Shows a definite saturation value depending on length of gap
◆ Measured using the e-sweeping detector (“swept” e’s)  
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Electron cloud at other locations in the ring

● Sections 4 and 9 are rather similar 

● Section 0 near the stripper foil has the most e-flux but 
◆ intensity dependence of the prompt e’s is much different 

— varies as the 1.5 to 2nd power of intensity and not as n ≥ 7
◆ bursts are greatly reduced at this location
◆ Many more ‘seed” electrons from the processes at the stripper foil

● Lots of e’s seen in dipoles and quads using biased collection plates 
but lacking the details obtained from RFA or e-sweeper 

● Highest pressure rise associated with inductive inserts of section 5

● Seems reasonable to assume that line density of e’s surviving the gap 
in section 4 represent a lower limit on the average density around the 
ring
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“Electron burst” phenomenon (110 turns)

Local Loss monitor signal

ES41Y 

ED42Y 

Bk 98, p 53
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Prompt electron signals for unstable beam 

Expansion of last 
part of store

● Data (1999) for 4.4 µC store, higher 
intensity saturated RFA electronics

● E-signal much larger (>10) than for 
stable beam of same intensity

● Electron pulse shape (at end of 
each turn) is similar to stable 
pulses

Beam pulse, BPM and e-signal turn by turn

Bk91, p48
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Methods of suppressing electron generation

● TiN coatings suppressed “prompt” electrons by a factor of 100 
or more in tests in section 4 of PSR

● Weak solenoid magnetic field suppressed prompt electrons by 
factor of ~ 50 in a 0.5 m section in PSR

● Lower beam losses and better vacuum ?

● Beam conditioning over time reduced prompt electron signals 
and improved the instability threshold curves

◆ Do the swept electrons change with conditioning?
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Picture of Solenoid Section with RFA
e-trajectory

Bk 98,  p 27-8
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Suppression of prompt e’s in a weak solenoid field

RFA signals in a weak solenoid fields
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Conditioning effect

Threshold Intensity Curves 2000, no inductors
"Conditioning" effect 
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Demonstrations of various “controls” for the instability

● Conditioning effect

● Traditional Landau damping from multipoles

● Coupled Landau damping via a skew quad
◆ X,Y coupling permits sharing of the stabilizing tune spread and 

growth rates in both planes thereby providing extra damping

● Inductive inserts
◆ Equivalent to more rf with suitable harmonics which passively 

compensate longitudinal space charge voltage
◆ Helps prevent leakage of beam into gap 
◆ Increased bucket height i.e., increased momentum spread for 

more Landau damping



4/10/2002 RJM_ICFA_ECE at PSR.ppt27

Effects of skew quad and octupole on instability and losses

Results for 5 µC/pulse peak beam intensity

Instability Threshold vs. Skew Quad Current 
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Instability Threshold vs. Octupole Current 
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Summary and Main Conclusions
● Good progress on understanding and characterizing the electron cloud

◆ Electron multiplication by trailing edge multipactor and captured electrons 
creates a copious source of prompt electrons  

◆ Sufficient numbers survive the gap to account for the instability thresholds

● TiN coatings offer the prospect of a cure with no increase in losses but 
not yet shown that it suppresses the e’s surviving the gap.

◆ Tests planned this summer using TiN coated electron sweeper 

● Landau damping by increased rf voltage, (X,Y) coupling, multipoles and 
inductive inserts significantly raises the instability threshold but with 
some increase in beam losses

● Open issues:
◆ How is the electron cloud generation modified in dipoles and quadrupoles?
◆ What causes the electron burst behavior?
◆ Will TiN coatings of all vacuum surfaces cure the instability?
◆ Can active damping be effective in controlling this instability?
◆ Why is the e-p instability not seen at ISIS?
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