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ectron cloud effects ( )} at e+/e- machines
118:35-9:05 land electron cloud diagnostics K. Harkay (ANL) _
219:05-9:35 |Observation of ECE at the KEKB Hitoshi Fukuma (KEK)
3/9:35-10:05 |Observation of ECE at the PSR R. Macek et al. (LANL)
4{10:05 -10:35|Theory and simulation of ECE Kazuhito Ohmi (KEK)
10:35 -11:00|Break

Simulations of electron cloud generation in the
5[11.00-11:30 |PSR and SNS Mauro Pivi (LBL)

Nonlinear delta-f simulation studies of e-p two-
6/11:30-12:00 |{stream instabilities H. Qin (PPPL)
7112:00-12:30

ECE in the KEK PS and the JHF project

IT. Toyama et al. (KEK)




Electron Cloud Effects

Vacuum degradation (e-stimulated gas desorption)
Beam induced multipacting

+ Resonant (APS, KEKB, PS, SPS, LHC?)

+ Trailing-edge multipactor (PSR, S_NS?, JHF?)
Two-stream e-p instability EaESgwes (ISR, PSR, AGSB, SNS?,
JHF?) -

Transverse coupled bunch instability (APS, B factories, PS, SPS,
LHC?)

Single bunch (head-tail) instability; emittance blowup (APS, B
factories, PS, SPS)

Heat load on cryogenic wall (LHC)

Cloud-induced noise or spurious signals in beam diagnostics (e.g.,
wirescanners, electrostatic pickups, IPM) (PSR, PS, SPS..)

Electrons trapped in distributed ion pump leakage field (CESR)
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K. Harkay: New electron cloud diagnhostics

e Retarding field analyzer (RFA) developed at ANL

+ Measures e-flux, energy spectra and time structure of electrons
striking the wall

+ Well characterized detector response
e Electron sweeper developed at LANL

+ Extends RFA concept using pulsed slectrode to sweep low
energy electrons from the pipe into RFA

3 471172002 RiM_ICFA_ECE at PSR.ppt



Electron cloud build-up rate and saturation as function of bunch charge

current per bunch
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Estimate cloud density given flux at wall and avg. electron velocity;
compare to avg. beam density (e.g. at 100 mA, 2 mA/bunch):

nec = (Id/ly) / detArea * Iy / <ve> = 1.5x10™ gm®
Nbeam = N / chambArea / bunch sep = 3x10'® ¢m’™

Saturated EC density varies locally by up to a factor of 3; nonlinear with total beam current;
‘horizontal EC-induced coupled-bunch instability observed for 2 mA/bunch, >90 mA

K. Harkay, R. Rosenberg, ANL ICFA HB2002, FNAL, Apr 8-12, 2002



Electron signals from RFA in straight section 4
2

Beam Pulse Electron Signals
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® RFA signal has contributions from “trailing edge multipactor” and “captured
electrons” released at end of beam pulse plus their secondaries
e Key issue is how many electrons survive the gap to be captured by the beam

Signals averaged for 32 beam macropulses, ~ 8 uC/pulse beam intensity, device is labeled ED42Y,
Transimpedance = 3.5 k<2, opening ~1 cm?

8 41512002 RIM_ ICFA_ECE at PSR ppt Bk95, p6-12



Sample electron data using electron sweeper at PSR
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0 100 200 300 400 500 ns

7.7 uC/pulse, bunch length = 280 ns, 30 ns injection notch,
signals averaged for 32 macropulses, repeller = - 25V, HV pulse = 500V

K. Harkay, R, Rosenberg, ANL ICFA HB2002, FNAL, Apr 8-12, 2002



NEG pump and Bellows lon pump
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Vertical beam size@IP (micron)
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Swept Electrons in pipe vs time after end of beam

pulse

Early results from electron sweeper 1000

for 5uC/pulse looking just after

extraction | —— Vpeak
Peak signal or integral have —=—Int
essentially the same shape curve 100

Long exponential tail seen with ~170 = 170

ns decay time ‘ v=1/0ns

Still see electrons after 1 us a /
‘Implies a high secondary yield g \

(reflectivity) for low energy electrons

(2-5 eV)

- 1
= ___,f_i_, m, .c2 ~
Setr -exp[ pgps ‘, °F :| 0.5
Implies neutralization lower limit of 0.1 . . . . .
- ~1.5% based on swept electrons 0 200 400 600 800 1000

signal at the end of the ~100ns gap T(ns)
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Prompt and Swept Electrons vs Beam Intensity

E-sweeper ES42Y 10/07/01

(fixed buncher voitage and accumulation time)
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The saturation of swept
electrons above 5 uC/pulse is
not restricted to variations of
beam intensity but includes
other variables that affect the
prompt signal such as:

¢ Variation in beam loss
+ Bursts
¢ Changes in pulse shape

Saturation explains several
puzzles:

¢+ Why instability threshold is
unchanged by increases in
losses or vacuum pressure

¢ Why the threshold intensity
curves vs buncher voltage do
not plateau at some intensity



Threshold Intensity (1 C/pulse)

48.
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Conditioning effect

Threshold Intensity Curves 2000, no inductors
"Conditioning” effect

RIM_collah3-24-02 ppt Bko5, p125-7
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M. Pivi: Simulations of e-cloud generation in PSR & SNS

® Features of LBNL code POSINST
+ Rigid proton beam using measured or calculated beam profile

¢ Primary electrons from losses (4x10-%/prot/turn for PSR) and/or
residual gas ionization

+ Electrons move in 3D subject to 2D forces from proton beam and e-
cloud space charge |

+ Detailed model of SEY at wall

® Reproduces general features of RFA signals from PSR

e Predicts large neutralization for SNS which is reduced
significantly by conditioned TiN coatings

® Primary electron source(s) and SEY are key input parameters

2 4/11/2002 RIM_ICFA_ECE at PSR.ppt



Electron energy cumulative spectrum (3D profile)
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H. Qin: Nonlinear Af studies of e-p

® HKey features:

+ A Vlasov-Maxwell approach which provides a self-consistent
description of detailed mode structures, instability threshold and
growth rate.

+ The delta-f particle in cell simulation reduces simulation noise

+ Theory and simulation of the e-p mstability in bunched beams
are being developed

e Main results:
+ Confirmation of main results of centroid model
+ Landau damping emerges naturally

+ Thresholds, mode structure and growth times for the linear
phase agree reasonably well with experiment observations

+ Theory and simulation predicts a nonlinear saturation level
below the experiment sensitivity

4 - 4/11/2002 RIM_ICFA_ECE at PSR.ppt



Ohmi: Theory and simulation of ECI

e Simulations of electron cloud buildup

. using primary electrons {~0 eV) from losses at the wall or ionization at beam
position and

¢ electron motion in electron static field of beam
e Calculated wake fleld {and impedance) of proton moving through cloud

° 1n-stablfl_i€§*tl‘iiﬁhulid from coasting beam model

5 471172002 RIM_ICFA_ECE at PSR.ppt



Estimation of E-cloud

ISIS
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Estimation of

JHF 3 GeV RCS

@injection

@extraction

140016004800

200

10001
s (m)

00

08

60

0 200 400

100

80 -
60
0
0
0



Estimation of stability

Wake field and stability for electron cloud instability

Variable | Joint project PSR ISIS
3 GeV RCS 50 GeV MR
inj. ext. inj. ext.

Z(©)/Q (Mm) 0.11 0088 021 0.006 0.7  0.002
Z(®),/Q (MQm) 022 030 3.0 030 034 0003

.,/ ¢ | 134 185 185 261 83 15
U, 0.08 0.23 0.11 0.02 1.6 0.10

Uy | 0.16 081 15 1.1 32 017

Slow beam extraction @50GeV MR: e-trapping due to residual gas ionization
unstable if neutralization factor > 0.7%, electron build-up time ~ 4 ms




SEY measurements

s Chamber material
w Secondary electron emission from metals and graphites / S. Kato and M. Nishiwaki

As Re::levad 3 After Sputtering
Normal Incidenca { Normal Incidence

Sacondary Elciron Yield
Sacondary Emciran Yield

Dependence of secondary electron yields on a primary electron energy
at the surfaces as-received and after sputtering.



