Wire Compensation - |

Kick from a round proton beam
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The kicks from the wire are

o Ty L cos Oy 4 Ay =

2 (Bp) rwa QW(BP) WA
(2)

At separations larger than 3¢, the fields cancel
provided the current is chosen appropriately.
Caveats:
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e Exact cancellation requires
Owa=m+0pa, Twa=Tpa

e Beams are not round at most locations.

e Wires cannot be placed at every location.
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Sextupole Doublet

Kick from a sextupole Achromatic Sextupole Doublet
1
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The kicks are even under a reflection Z z,

(.T, y) — (—I, —y) .
Phase space vector 7 is transformed as 1
Zy =K, o (-1) o K, Z

while without the sextupoles, Z, = —Z,.

Due to the symmetry property, the kicks cancel
and we have no change in the phase space vector
after the second sextupole,

Caveats
e The sextupoles do influence the particle orbits in the region between them. Outside the doublet,
the orbits do not change.

e The cancellation is not exact for off-momentum particles. The sextupoles act as momentum
dependent quadrupoles.



Wire Compensation of 1 Kick

Principle of Compensation: The wire should restore the phase space trajectory to the point
reached in the absence of the beam-beam interaction and the wire. The phase point after the wire is

the same as though the motion were completely linear.
This requires épx /4P\ |
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nential part of the beam-beam kick, this condition
can be met for any particle provided
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The compensation conditions also determine

the transverse position of the wire.



Wire Compensation of N Kicks

Compensation
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= Phase advance between last beam-beam kick and the wire
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The total phase advance does not have to be = because the position also changes due to the succes-

sive beam-beam kicks.
Comments

e It is likely we will need to lump beam-beam
kicks in blocks of =, 27, 37, ... before com-
pensation by a single wire.

e The cancellation can only work in an average
sense.

e The transverse position of the wire is deter-
mined.

Beam-beam kick, rotation,

beam-beam kick,.... wire kick




Tune shift compensation

Tune shifts at zero amplitude due to a wire
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Both tune shifts have the same dependence on the wire parameters in square brackets [ .
The wire also introduces coupling
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The minimum tune split is of the same order as the tune shift.
The eigen tunes are
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Use the wire to cancel the change in the eigen tunes
1 1
Avy = Avyp + Avgw + éﬁ(bb +wire) =0, Av_ = Av,p+ Avy gy — §A(bb + wire) =0

Comments:
e These can be used to find Iy, L /r%, and the angle 6y

e For fixed beam-beam tune shifts, - oc 73,. Grows faster with distance than the current required
to cancel the kick itself where Iy L o< ryy.

e The cancellation is effective exactly only at a single amplitude
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Minimizing the norm of a map

Simplified version: Minimize the maximum phase space distortions by finding the appropriate
corrector strengths.
Consider 2D phase space and a map which transports particles
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A;;, B;; are functions of the magnet and corrector strengths. The map is area-preserving which
constrains the values of A, B.
Minimizing the norm of the map minimizes
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Without correction, nonlinearities could in

/’ﬁ the worst case transport the original domain
(black curve) to the red curve.

With optimum corrector strengths, the largest

a0 M excursions are limited to the green curve.

Z worst case after optimizing



Resultswith 4 wires at | njection

Wire Parameters

Wire | I [A] | x [mm] |y [mm]
WA17| 50 | 16.823 | -1.033
WCO0 | 75 | 12.993 |-11.028
WEO | -25 | 21.232 | 14.282
WFO0 | 232 | 14.004 | -9.134
DA [o] Number of turns
10*|10°| 10
Beam-beam on, no wires 6.0 4.0
Beam-beam on, best casewires| 7.0 | 7.0

e DA not sensitive to +0.5 mm placement tolerance

e |t is easy to make things worse, especially if the wire is too close to the beam

e Next steps

— Optimize at collision, compensate the most damaging parasitics
— Evaluate at injection with higher proton intensities
— Evaluate possibility of wires outside the beam-pipe.



